Despite the high demand for press-hardenable steel (PHS) with coatings that provide sacrificial cathodic protection, Zn-based coatings have experienced limited use due to the significant challenges associated with avoiding liquid metal embrittlement (LME) while maintaining robust cathodic protection when using conventional PHS materials and processing techniques. The present research addresses these challenges by reducing the conventional direct hot press forming (DHPF) temperature to between 600–700 °C, such that forming and quenching occurs well below the Zn(Fe)liq → Г-Fe3Zn10 peritectic temperature of 782 °C, thereby removing the conditions necessary for LME to occur while allowing for formation of the cathodically-protective Г-Fe3Zn10 phase. The objective of this work was to define a process window for two galvanized prototype PHS alloys with compositions of 0.20C-2.01Mn-0.26Si-0.005B and 0.19C-2.5Mn-0.26Si-0.005B (wt%) that would result in fully martensitic microstructures, tensile strengths (TS) ≥ 1500 MPa, and robust cathodic protection, defined as attaining ≥ 15 vol% Г-Fe3Zn10 in the coating microstructure, while avoiding LME. Accomplishing this task involved characterizing both grades as a function of austenization time, stamping temperature, and strain imposed by the forming process in order to define process windows that resulted in parts that met the aforementioned property requirements.
It was found that the approach of increasing the Mn content relative to conventional PHS grades was successful in improving the hardenability sufficiently to enable the formation of fully martensitic microstructures despite the lower effective cooling rates associated with the reduced DPHF temperatures. Microstructural imaging and tensile testing demonstrated that, for both prototype PHS grades, a process window exists for the production of parts that satisfy the targets of the formation of fully martensitic microstructures and TS ≥ 1500 MPa while exhibiting uniform elongation of about 0.05 followed by significant post-uniform elongation. The effect of DHPF temperature and strain imposed by the forming process on mechanical properties was found to be negligible. Tensile tests and fractography revealed that reducing the DHPF temperature to between 600–700 °C was successful in preventing LME, thereby allowing samples to fracture in a ductile manner. Micro-cracking in the coating of the DHPF part was observed; however, these cracks were arrested at the coating-substrate interface. For all tested conditions, the coating met the target of ≥ 15 vol% Г-Fe3Zn10, implying that robust cathodic protection is expected. Based on the results of these experiments, it was concluded that DHPF process windows that meet all of the property targets include austenization times and DHPF temperatures of 120–180 s and 600–700 °C, respectively, for the 2Mn grade, and 60–180 s and 600–700 °C, respectively, for the 2.5Mn grade. / Thesis / Master of Science (MSc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/25440 |
Date | January 2020 |
Creators | Thomsen, Christopher |
Contributors | McDermid, Joseph, Materials Science and Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0135 seconds