Return to search

Développement de nouveaux sels Binol-imidazoliums : de la catalyse asymétrique aux applications biologiques

Le 1,1'-bi-2-naphtol ou Binol, présentant une chiralité axiale, est un ligand très utilisé en catalyse asymétrique. Au cours des vingt dernières années, le Binol a servi de synthon à l’élaboration de très nombreux ligands permettant la catalyse asymétrique de tous types de réactions, allant de l’hydrogénation, à l’alkylation, en passant par diverses réactions péricycliques. Le grand intérêt pour ce ligand vient de sa versatilité et des nombreuses possibilités de fonctionnalisation qu’il offre, permettant d’altérer ses propriétés catalytiques à volonté, aussi bien en modifiant son caractère électronique, qu’en introduisant des facteurs stériques autour du site catalytique.
Parallèlement aux développements de la catalyse par des dérivés de Binol, le domaine des liquides ioniques a connu un intérêt croissant ces dernières années. Les liquides ioniques, sels dont le point de fusion est inférieur à 100°C, cumulent de nombreuses qualités convoitées : faible pression de vapeur, stabilité thermique et chimique et fort pouvoir de solvatation. Dû à ces propriétés, les liquides ioniques ont principalement été étudiés dans l’optique de développer une gamme de solvants recyclables. Alors que les propriétés des liquides ioniques sont facilement modulables en fonction de l’anion et du cation choisi, le concept de liquide ionique à tâche spécifique va plus loin et propose d’introduire directement, sur le cation ou l’anion, un groupement conférant une propriété particulière.
En suivant cette approche, plusieurs ligands ioniques ont été rapportés, par simple couplage d’un cation organique à un ligand déjà connu. Étonnamment, le Binol a fait l’objet de très peu de travaux pour l’élaboration de ligands ioniques. Dans cette thèse, nous proposons l’étude d’une famille de composés de type Binol-imidazolium dont les unités Binol et imidazolium sont séparées par un espaceur méthylène. Différents homologues ont été synthétisés en variant le nombre d’unités imidazolium et leur position sur le noyau Binol, la longueur de la chaîne alkyle portée par les unités imidazolium et la nature du contre-anion. Après une étude des propriétés thermiques de ces composés, l’utilisation des Binol-imidazoliums en tant que ligands dans une réaction asymétrique d’éthylation d’aldéhydes aromatique a été étudiée en milieu liquide ionique. La réaction a été conduite en solvant liquide ionique dans le but de recycler aussi bien le ligand Binol-imidazolium que le solvant, en fin de réaction. Cette étude nous a permis de démontrer que la sélectivité de ces ligands ioniques dépend grandement de leur structure. En effet, seuls les Binols fonctionnalisés en positions 6 et 6’ permettent une sélectivité de la réaction d’éthylation.
Alors que les dérivés de Binol fonctionnalisés en positions 3 et 3’ ne permettent pas une catalyse énantiosélective, il a déjà été rapporté que ces composés avaient la capacité de complexer des anions. D’autre part, il a déjà été rapporté par notre groupe, que les composés comportant des unités imidazolium pouvaient permettre le transport d’anions à travers des bicouches lipidiques en fonction de leur amphiphilie. Ceci nous a amenés à la deuxième partie de cette thèse qui porte sur les propriétés ionophores des Binols fonctionnalisés en positions 3 et 3’ par des unités imidazoliums. Dans un premier temps, nous nous sommes intéressés à l’étude de la relation structure-activité et au mécanisme de transport de ces composés.
Le transport d’anions étant un processus clé dans la biologie cellulaire, l’activité biologique des composés présentant une activité ionophore dans des systèmes modèles (liposomes) a été étudiée par la suite. L’activité antibactérienne des nos composés a été testée sur quatre souches de bactéries. Il s’est avéré que les composés Binol-imidazolium sont actifs uniquement sur les bactéries Gram positives. Finalement, la cytotoxicité des composés présentant une activité antibactérienne a été étudiée sur des cellules humaines. / 1,1'-Bi-2-naphthol or Binol, having an axial chirality, is a widely used ligand in asymmetric catalysis. Over the last twenty years, Binol was used as a synthon for the synthesis of numerous ligands for the asymmetric catalysis of various reactions including hydrogenation, alkylation and various pericyclic reactions. The interest in this ligand comes from its versatility and possibilities to modify its electronic character and to introduce steric bulk around the catalytic site.
Paralleling interest in the study of Binol derivatives as ligands for asymmetric catalysis has been a growth in research on ionic liquids. Ionic liquids are salts with melting points below 100°C. They combine many interesting properties, such as low vapor pressure, thermal and chemical stability and high solvation power. Due to these properties, ionic liquids have been investigated to develop a range of recyclable solvents. Recently, the concept of task-specific ionic liquids has emerged in which the properties of the ionic liquids are tuned by selecting different cations and anions, to accomplish specific applications.
Following this approach, several ionic ligands have been made by coupling known ligands to an ionic liquid cation. Rarely, Binol has been used for this purpose. In this thesis, we study a family of Binol-imidazolium type compounds, in which Binol and imidazolium units are linked by a methylene spacer. Several analogs were synthesized by varying the number of imidazolium units and their position on the Binol moiety, the alkyl chain length on the imidazolium units and the counter-anion. After a study of the thermal properties, the use of Binol-imidazoliums as ligands was described in the asymmetric ethylation of aromatic aldehydes. The reaction was conducted in ionic liquid solvent and both Binol-imidazolium ligand and the solvent were recycled at the end of the reaction. This study demonstrates that the selectivity of these ligands greatly depends on their structure. Indeed, only Binol analogs functionalized at the 6 and 6’ positions were selectivite.
Although Binol derivatives functionalized at the 3 and 3' positions did not serve as enantioselective catalysts, they were able to complex anions. Furthermore, it has already been reported by our group, that imidazolium compounds can transport anions across lipid bilayers depending on their amphiphilicity. In the second part of this thesis, we cover the ionophoric properties of Binol derivatives functionalized at the 3 and 3' positions by imidazolium moieties. First, a study will be presented of their structure-property relationships in the transport through liposomes. Thereafter, the transport mechanism will be discussed.
Finally, the biological activity of our compounds with ionophore activity was studied, because the anion transport is a key process in cell biology. Their antibacterial activity was tested on four strains of bacteria. Binol-imidazolium compounds exhibited activity on Gram positive bacteria. Their cytotoxicity was also studied on human cells.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/10519
Date12 1900
CreatorsVidal, Marc
ContributorsSchmitzer, Andreea R.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0033 seconds