Return to search

[en] ESTIMATING THE LITHIUM-ION BATTERY STATE OF HEALTH: A RECURRENT NEURAL NETWORK APPROACH / [pt] ESTIMATIVA DE CURVA DE ESTADO DE SAÚDE DE BATERIAS DE ÍON-LÍTIO: UMA ABORDAGEM USANDO REDES NEURAIS RECORRENTES

[pt] Por conta dos rápidos avanços tecnológicos, percebe-se uma mudança nos hábitos e das necessidades das pessoas. Há uma dependência cada vez maior de aparelhos eletrônicos como smartphones, notebooks etc. Construir baterias com grande capacidade energética é um dos desafios atuais para aumentar a autonomia dos aparelhos eletrônicos. Entretanto, uma alternativa que pode ajudar a manter aparelhos eletrônicos por mais tempo longe das tomadas é o compartilhamento de baterias. Existem na literatura muitos estudos envolvendo o compartilhamento de baterias no contexto de veículos elétricos, porém não são encontradas aplicações em smartphones. Um parâmetro importante a ser monitorado neste contexto é o estado de saúde (SoH). Até o momento, não há um consenso na literatura acerca do melhor modelo para estimar o SoH de baterias devido à falta de métodos bem estabelecidos. Assim, o objetivo geral desta dissertação foi construir um modelo para estimar a curva de estado de saúde, por meio do estado de carga, com vistas a estimar a saúde de baterias de íon-lítio. O modelo proposto foi baseado em redes neurais recorrentes. Para treinar e validar o modelo, foi construído um sistema para a realização de ensaios destrutivos, sendo possível estudar o comportamento de baterias de íon-lítio ao longo de toda vida útil. O modelo proposto foi capaz de estimar o SoH das baterias estudadas com boa exatidão, sob diferentes parâmetros de carga/descarga. O diferencial do modelo são baixa complexidade computacional, mesmo envolvendo modelos de redes neurais, e serem adotados parâmetros de entrada de fácil medição. / [en] Because of the fast technological advances, there is a change in people s habits and needs. There is an increasing dependence on electronic devices such as smartphones, notebooks etc. Building batteries with great energy capacity is one of the current challenges to increase the autonomy of electronic devices. However, an alternative that can help keep electronic devices longer away from sockets is battery swap. There are many studies in the literature involving the sharing of batteries in the context of electric vehicles, but no applications are found in smartphones. An important parameter to be monitored in this context is state of health (SoH). To date, there is no consensus in the literature about the best model for estimating battery SoH due to the lack of well-established methods. Thus, the objective of this dissertation is to build a model to estimate the state of health curve, with a view to classifying the health of lithium-ion batteries, through state of charge curve, for applications involving battery swap aiming to use in smartphones. The proposed model was based on recurrent neural networks. To train and validate the model, a system was built to perform destructive tests, being possible to study the behavior of lithium-ion batteries throughout its useful life. The proposed model was able to estimate the SoH of the batteries studied with good precision, under different charge / discharge parameters. The distinction of the model is low computational complexity, even involving neural network models, and easy-to-measure input parameters are adopted.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:53183
Date10 June 2021
CreatorsRAFAEL SAADI DANTAS TEIXEIRA
ContributorsRODRIGO FLORA CALILI, RODRIGO FLORA CALILI, RODRIGO FLORA CALILI, RODRIGO FLORA CALILI
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0022 seconds