Return to search

Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries

Hierarchically porous nitrogen-doped graphene frameworks (N-GFs) are fabricated through the ice-templating of GO with polyethylenimine and the thermal treatment of the resultant hybrids. As cathode materials in lithium ion batteries (LIBs), the obtained N-GFs exhibit an outstanding specific capacity of 379 mA h g−1 at 0.5 A g−1 for 2500 cycles. Even at an ultrahigh current density of 5 A g−1, the N-GFs maintain a capacity of 94 mA h g−1, superior to that of most reported LIB cathode materials. The experimental results and quantum mechanics calculations suggest that pyridinic-like N and pyridinic N-oxide in graphene are responsible for the excellent cathodic performance of the bipolar N-GFs by providing fast surface faradaic reactions with both p- and n-doped states.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:30349
Date17 July 2017
CreatorsHuang, Yanshan, Wu, Dongqing, Dianat, Arezoo, Bobeth, Manferd, Huang, Tao, Mai, Yiyong, Zhang, Fan, Cuniberti, Gianaurelio, Feng, Xinliang
PublisherRoyal Society of Chemistry
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1039/C6TA09161J

Page generated in 0.0022 seconds