Lithium-ion (Li-ion) batteries are amongst the most commonly used types in Electric (EVs) and Hybrid Electric (HEVs) Vehicles due to their high energy and power densities, as well as long lifetime. A battery is one of the most important components of an EV and hence it needs to be monitored and controlled accurately. The safety, and reliability of battery packs must then, be ensured by accurate management, control, and monitoring functions by using a Battery Management System (BMS).
A BMS is also responsible for accurate real-time estimation of the State of Charge (SoC), State of Health (SoH) and State of Power (SoP) of the battery. The battery SoC provides information on the amount of energy left in the battery. The SoH determines the remaining capacity and health of a pack, and the SoP represents the maximum available power. These critical battery states cannot be directly measured. Therefore, they have to be inferred from measurable parameters such as the current delivered by the battery as well as its terminal voltage. Consequently, in order to offer
accurate monitoring of SoC, SoH and SoP, advanced numerical estimation methods need to be deployed.
In the estimation process, the states and parameters of a system are extracted from measurements. The objective is to reduce the estimation errors in the presence of uncertainties and noise under different operating conditions. This thesis uses and provides different enhancements to a robust estimation strategy referred to as the Smooth Variable Structure Filter (SVSF) for condition monitoring of batteries. The SVSF is a predictor-corrector method based on sliding mode control that enhances the robustness in the presence of noise and uncertainties. The methods are proposed to
provide accurate estimates of the battery states of operation and can be implemented in real-time in BMS.
To improve the performance of battery condition monitoring, a measurement-based SoC estimation method called coulomb counting is paired with model-based state estimation strategy. Important considerations in parameter and state estimation are model formulation and observability. In this research, a new model formulation that treats coulomb counting as an added measurement is proposed. It is shown that this formulation enhanced information extraction, leading to a more accurate state estimation, as well as an increase in the number of parameters and variables that
can be estimated while maintaining observability. This model formulation is used for characterizing the battery in a range of operating conditions. In turn, the models are integral to a proposed adaptive filter that is a combination of the Interacting Multiple Model (IMM) concept and the SVSF. It is shown that this combined strategy is an efficient estimation approach that can effectively deal with battery aging. The proposed method provides accurate estimation for various SoH of a battery.
Further to battery aging adaptation, measurement errors such as sensor noise, drift, and bias that affect estimation performance, are considered. To improve the accuracy of battery state estimation, a noise covariance adaptation scheme is developed for the SVSF method. This strategy further improves the robustness of the SVSF in the presence of unknown physical disturbances, noise, and initial conditions. The proposed estimation strategies are also considered for their implementation on battery packs. An important consideration in pack level battery management is
cell-to-cell variations that impact battery safety. This study considers online battery parametrization to update the pack’s model over time and to detect cell-to-cell variability in parallel-connected battery cells configurations. Experimental data are used to validate and test the efficacy of the proposed methods in this thesis. / Thesis / Doctor of Philosophy (PhD) / To address the critical issue of climate change, it is necessary to replace fossil-fuel vehicles with battery-powered electric vehicles. Despite the benefits of electric vehicles, their popularity is still limited by the range anxiety and the cost determined by the battery pack. The range of an electric vehicle is determined by the amount of charge in its battery pack. This is comparable to the amount of gasoline in a gasoline vehicle’s tank. In consideration of the need for methods to address range anxiety, it is necessary to develop advanced algorithms for continuous monitoring and control of a battery pack to maximize its performance. However, the amount of charge and health of a battery pack cannot be measured directly and must be inferred from measurable variables including current, voltage and temperature. This research presents several algorithms for detecting the range and health of a battery pack under a variety of operating conditions. With a more accurate algorithm, a battery pack can be monitored closely, resulting in lower long-term costs. Adaptive methods for determining a battery’s state of charge and health in uncertain and noisy conditions have been developed to provide an accurate measure of available charge and capacity. Methods are then extended to improve the determination of state of charge and health for a battery module.
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/27529 |
Date | January 2022 |
Creators | Rahimifard, Sara Sadat |
Contributors | Habibi, Saeid, Goward, Gillian |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds