Indiana University-Purdue University Indianapolis (IUPUI) / The maternal liver shows marked growth during pregnancy to accommodate the development and metabolic needs of the placenta and fetus. Previous study has shown that the maternal liver grows proportionally to the increase in body weight during gestation by hyperplasia and hypertrophy of hepatocytes. As the maternal liver is enlarged, the transcript level of Ascl1, a transcription factor essential to progenitor cells of the central nervous system and peripheral nervous system, is highly upregulated. The aims of the study were to (1) identify hepatic Ascl1-expressing cells, and (2) study the functions of Ascl1 in maternal liver during pregnancy. In situ hybridization shows that most cell types (parenchymal, nonparenchymal, and mesothelial cells) express Ascl1 mRNA in maternal livers during gestation and in male regenerating livers. Notably, hepatic mesothelial cells abundantly express Ascl1 during pregnancy and liver regeneration. Inducible ablation of Ascl1 gene during pregnancy results in maternal liver enlargement, litter size reduction, and fetal growth retardation. In addition, maternal hepatocytes deficient in Ascl1 gene lack majority of their cytosols and exhibit β-catenin nuclear translocation, while maintaining their cellular boundary and identity. In summary, in both maternal liver during pregnancy and regenerating liver, the expression of Ascl1 is induced in most cell types. Mesothelial cells are potential origin of Ascl1-expressing cells. Ascl1 gene is essential for the progression of normal pregnancy
Identifer | oai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/5971 |
Date | January 2014 |
Creators | Lee, Joonyong |
Contributors | Dai, Guoli, Belecky-Adams, Teri, Meyer, Jason S. |
Source Sets | Indiana University-Purdue University Indianapolis |
Language | en_US |
Detected Language | English |
Type | Thesis |
Rights | Attribution-NonCommercial-NoDerivs 3.0 United States, http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
Page generated in 0.0025 seconds