Return to search

Design Optimizations of LLC Resonant Converters with Planar Matrix Transformers

LLC resonant converters have been a popular choice for DC-DC converters due to their high efficiency, high power density, and hold-up capability in power supplies for communication systems, datacenters, consumer electronics, and automobiles. With the rapid development of wide-bandgap devices and novel magnetic materials, the push for higher switching frequencies to achieve higher power densities at lower costs is gaining traction.

To demonstrate high efficiency and high power density, the Center for Power Electronics Systems (CPES) at Virginia Tech designed an 800W, 1MHz 400V/12V LLC converter for future datacenters, which could achieve a peak efficiency of 97.6% and a power density of 900 W/in3. However, with the ever-increasing demand for online services, the performance of power delivery must also be simultaneously improved to keep pace with the demand.

The focus of this thesis is improving the performance of CPES’ previous 400V/12V LLC converter by investigating different aspects of its design and operation. Ultimately, design guidelines are proposed, and improvements are demonstrated to effectively achieve higher efficiency and higher power density than the previous CPES converter.

Multiple aspects of the LLC converter’s design and structure are investigated to further improve its performance, and three main areas are the focus of this thesis. The output-side termination design of the planar transformer is investigated and modeled, and design guidelines for filter capacitor selection are provided for optimal efficiency. Next, the existing shielding technique for matrix transformers, which helps reduce common-mode (CM) noise without compromising on efficiency, is investigated for asymmetry and current-sharing issues, and modifications have been proposed to improve its efficiency. Thirdly, the LLC converter’s switching frequency is optimized to improve its performance over the previous CPES converter. Finally, the hardware results with the proposed improvements are demonstrated, and the converter’s performance is compared with the previous CPES converter as well as other recent proposed solutions. / M.S. / The electricity demand by datacenters has been growing exponentially over the past few decades, especially due to the boom of artificial intelligence in addition to other internet services. This has resulted in a requirement to continually improve the efficiencies of the power delivery from the grid, through the datacenter power architecture, and finally to the loads on the server racks. The overall datacenter power architecture has been improved over time to improve the total efficiency. However, the performance of each stage along the power architecture must be improved to keep in pace with the energy demand.

The focus of this thesis is to improve the performance of the 400V/12V DC-DC stage for future datacenters. Previously, the Center for Power Electronics Systems (CPES) at Virginia Tech developed a 1MHz 800W 400V/12V LLC converter with 97.6% peak efficiency and 900W/in3 power density. However, the performance of the converter must be further improved to stay ahead of the competition and keep in pace with the increasing energy demand.

Multiple aspects of the LLC converter’s design and structure are investigated to further improve its performance, and three main areas are the focus of this thesis. Firstly, the high-frequency termination design, or how different components are interconnected and arranged, is studied, and a capacitance selection guideline is proposed to maximize the efficiency. Next, the existing shielding technique for matrix transformers, which helps reduce common-mode (CM) noise without compromising on efficiency, is investigated for asymmetry and current-sharing issues, and modifications have been proposed to improve its efficiency. Thirdly, the LLC converter’s switching frequency is optimized to improve its performance over the previous CPES converter. Finally, the hardware results with the proposed improvements are demonstrated, and the converter’s performance is compared with the previous CPES converter as well as other recent proposed solutions.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/108057
Date12 1900
CreatorsPrakash, Pranav Raj
ContributorsElectrical and Computer Engineering, Li, Qiang, Dong, Dong, Southward, Steve C.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf
RightsCreative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0024 seconds