Appropriately constructed pollutant export models can help set management priorities for catchments, identify critical pollutant source areas, and are important tools for developing and evaluating economically viable ways of minimising surface water pollution.¶
This thesis presents a comparison, an evaluation and an integration of models for predicting the export of environmental pollutants, in particular sediment, through river systems. A review of the capabilities and limitations of current water quality modelling approaches is made. Several water quality and quantity modelling approaches are applied and evaluated in the catchment of the upper Murrumbidgee River.¶
The IHACRES rainfall-runoff model and a simple hydrologic routing model are applied with the aim of developing a capacity to predict streamflow at various catchment scales and to enable integration with other pollutant load estimation techniques. Methods for calculating pollutant loads from observed pollutant concentration and modelled streamflow data are also investigated. Sediment export is estimated using these methods over a 10-year period for two case study subcatchments. Approaches for water quality sampling are discussed and a novel monitoring program using rising stage siphon samplers is presented.
Results from a refinement of the Sediment River Network model in the upper Murrumbidgee catchment (SedNet-UM) are presented. The model provides a capacity to quantify sediment source, transport and to simulate the effects of management change in the catchment. The investigation of the model includes rigorous examination of the behaviour of the model through sensitivity assessment and comparison with other sediment modelling studies. The major conclusion reached through sensitivity assessment was that the outputs of the model are most sensitive to perturbation of the hydrologic parameters of the model.¶
The SedNet-UM application demonstrates that it is possible to construct stream pollutant models that assist in prioritising management across catchment scales. It can be concluded that SedNet and similar variants have much potential to address common resource management issues requiring the identification of the source, propagation and fate of environmental pollutants. In addition, incorporating the strengths of a conceptual rainfall-runoff model and the semi-distributed SedNet model has been identified as very useful for the future prediction of environmental pollutant export.
Identifer | oai:union.ndltd.org:ADTP/216796 |
Date | January 2002 |
Creators | Newham, Lachlan Thomas Hopkins, lachlan.newham@anu.edu.au |
Publisher | The Australian National University. Centre for Resource and Environmental Studies |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.anu.edu.au/legal/copyrit.html), Copyright Lachlan Thomas Hopkins Newham |
Page generated in 0.0019 seconds