Return to search

[en] A SHORT TERM LOAD FORECASTING MODEL COMBINING STATISTICAL AND COMPUTATIONAL INTELLIGENCE BASED MODELS / [pt] UM MODELO DE PREVISÃO DE CURTO PRAZO DE CARGA ELÉTRICA COMBINANDO MÉTODOS ESTATÍSTICOS E INTELIGÊNCIA COMPUTACIONAL

[pt] Este trabalho apresenta um novo modelo de previsão de
curto prazo de carga elétrica que reúne técnicas de
inteligência computacional e métodos estatísticos. Ele
permite aproveitar as vantagens de inteligência
computacional, relativas à criação de classes da série de
entrada e ao processamento de variáveis climáticas de
forma lingüística, e aquelas provenientes de modelos
estatísticos, onde os parâmetros e a ordem do modelo são
conhecidos e o intervalo de confiança das previsões é
determinado. O modelo é uma extensão do método
desenvolvido por P.C. Gupta, onde são empregadas técnicas
de inteligência computacional junto com o método original.
O modelo resultante compreende um classificador, um
previsor e um procedimento para aprimorar as estimativas.
O classificador é implementado por uma rede neural
artificial com aprendizado não-supervisionado, enquanto o
previsor emprega modelos estatísticos, combinando métodos
de média móvel, amortecimento exponencial e auto-
regressivo. Um sistema com lógica nebulosa utiliza
variáveis climáticas no aprimoramento da previsão obtida. / [en] A new short-term load forecasting procedure is presented
in this work, mixing techniques from the statistical
models and those from computational intelligence (CI). It
takes advantage of the CI techniques to establish the
various load profiles and to process climatic variables in
a linguistic way, and those from the statistical side,
where the parameters and the order of the model are known
and a spread measure is determined. The model is an
adaptation of the method developed by P.C.Gupta, where CI
techniques are added to the original method.
The final model includes a classifer scheme, a predictive
scheme and a procedure to improve the estimations. The
classifier is implemented via an artificial neural network
using a non-supervised learning moving average,
exponential smoothing and ARMA type of models. A fuzzy
logic procedure uses climating variables to improve the
forecast.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:7948
Date17 March 2006
CreatorsPLUTARCHO MARAVILHA LOURENCO
ContributorsREINALDO CASTRO SOUZA
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.002 seconds