Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-09-16T12:52:39Z
No. of bitstreams: 1
DissSATM.pdf: 3079104 bytes, checksum: 51b46ffeb4387370e30fb92e31771606 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-16T19:59:28Z (GMT) No. of bitstreams: 1
DissSATM.pdf: 3079104 bytes, checksum: 51b46ffeb4387370e30fb92e31771606 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-16T19:59:34Z (GMT) No. of bitstreams: 1
DissSATM.pdf: 3079104 bytes, checksum: 51b46ffeb4387370e30fb92e31771606 (MD5) / Made available in DSpace on 2016-09-16T19:59:41Z (GMT). No. of bitstreams: 1
DissSATM.pdf: 3079104 bytes, checksum: 51b46ffeb4387370e30fb92e31771606 (MD5)
Previous issue date: 2015-10-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Latterly, the development of data mining techniques has emerged in many applications’ fields with aim at analyzing large volumes of data which may be simple and / or complex. The logistics of transport, the railway setor in particular, is a sector with such a characteristic in that the data available in are of varied natures (classic variables such as top speed or type of train, symbolic variables such as the set of routes traveled by train, degree of tack, etc.). As part of this dissertation, one addresses the problem of classification and prediction of heterogeneous data; it is proposed to study through two main approaches. First, an automatic classification approach was implemented based on classification tree technique, which also allows new data to be efficiently integrated into partitions initialized beforehand.
The second contribution of this work concerns the analysis of sequence data. It has been proposed to combine the above classification method with Markov models for obtaining a time series (temporal sequences) partition in homogeneous and significant groups based on probabilities. The resulting model offers good interpretation of classes built and allows us to estimate the evolution of the sequences of a particular vehicle. Both approaches were then applied onto real data from the a Brazilian railway information system company in the spirit of supporting the strategic management of planning and coherent prediction. This work is to initially provide a thinner type of planning to solve the problems associated with the existing classification in homogeneous circulations groups. Second, it sought to define a typology of train paths (sucession traffic of the same train) in order to provide or predict the next movement of statistical characteristics of a train carrying the same route. The general
methodology provides a supportive environment for decision-making to monitor and control the planning organization. Thereby, a formula with two variants was proposed to calculate the adhesion degree between the track effectively carried out or being carried out with the planned one. / Nos últimos anos aflorou o desenvolvimento de técnicas de mineração de dados em muitos domínios de aplicação com finalidade de analisar grandes volumes de dados, os quais podendo ser simples e/ou complexos. A logística de transporte, o setor ferroviário em particular, é uma área com tal característica em que os dados disponíveis são muitos e de variadas naturezas (variáveis clássicas como velocidade máxima ou tipo de trem, variáveis simbólicas como o conjunto de vias percorridas pelo trem, etc). Como parte desta dissertação, aborda-se o problema de classificação e previsão de dados heterogêneos, propõe-se estudar através de duas abordagens principais. Primeiramente, foi utilizada uma abordagem de
classificação automática com base na técnica por ´arvore de classificação, a qual também permite que novos dados sejam eficientemente integradas nas partições inicial. A segunda contribuição deste trabalho diz respeito à análise de dados sequenciais. Propôs-se a combinar o método de classificação anterior com modelos de Markov para obter uma participação de sequências temporais em grupos homogêneos e significativos com base nas probabilidades. O modelo resultante oferece uma boa interpretação das classes construídas e permite estimar a evolução das sequências de um determinado veículo. Ambas as abordagens foram então aplicadas nos dados do sistema de informação ferroviário, no espírito de dar apoio à
gestão estratégica de planejamentos e previsões aderentes. Este trabalho consiste em fornecer inicialmente uma tipologia mais fina de planejamento para resolver os problemas associados com a classificação existente em grupos de circulações homogêneos. Em segundo lugar, buscou-se definir uma tipologia de trajetórias de trens (sucessão de circulações de um
mesmo trem) para assim fornecer ou prever características estatísticas da próxima circulação mais provável de um trem realizando o mesmo percurso. A metodologia geral proporciona um ambiente de apoio à decisão para o monitoramento e controle da organização de planejamento. Deste fato, uma fórmula com duas variantes foi proposta para calcular o grau de
aderência entre a trajetória efetivamente realizada ou em curso de realização com o planejado.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/7242 |
Date | 16 October 2015 |
Creators | Ataky, Steve Tsham Mpinda |
Contributors | Santos, Marilde Terezinha Prado |
Publisher | Universidade Federal de São Carlos, Câmpus São Carlos, Programa de Pós-graduação em Ciência da Computação, UFSCar |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds