Epidemiological data with disease characteristic information can be modelled in several ways. One way is taking each disease characteristic as a response and constructing binary or polytomous logistic regression model. Second way is using a new response which consists of disease subtypes created by cross-classification of disease characteristic levels, and then constructing polytomous logistic regression model. The former may be disadvantageous since any possible covariation between disease characteristics is neglected, whereas the latter can capture that covariation behaviour. However, cross-classifying the characteristic levels increases the number of categories of response, so that dimensionality problem in parameter space may occur in classical polytomous logistic regression model. A two staged polytomous logistic regression model overcomes that dimensionality problem. In this thesis, study is progressen in two main directions: simulation study and data analysis parts. In simulation study, models that capture the covariation behaviour are compared in terms of the response model parameter estimators. That is, performances of the maximum likelihood estimation (MLE) approach to classical polytomous logistic regression, Bayesian estimation approach to classical polytomous logistic regression and pseudo-conditional likelihood (PCL) estimation approach to two stage polytomous logistic regression are compared in terms of bias and variation of estimators. Results of the simulation study revealed that for small sized sample and small number of disease subtypes, PCL outperforms in terms of bias and variance. For medium scaled size of total disease subtypes situation when sample size is small, PCL performs better than MLE, however when the sample size gets larger MLE has better performance in terms of standard errors of estimates. In addition, sampling variance of PCL estimators of two stage model converges to asymptotic variance faster than the ML estimators of classical polytomous logistic regression model. In data analysis, etiologic heterogeneity in breast cancer subtypes of Turkish female cancer patients is investigated, and the superiority of the two stage polytomous logistic regression model over the classical polytomous logistic model with disease subtypes is represented in terms of the interpretation of parameters and convenience in hypothesis testing.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613531/index.pdf |
Date | 01 July 2011 |
Creators | Erdem, Munire Tugba |
Contributors | Kalaylioglu, Zeynep |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.014 seconds