Return to search

Machine Learning for Water Monitoring Systems

Water monitoring is an essential process that managesthe well-being of freshwater ecosystems. However, it isgenerally an inefficient process as most data collection is donemanually. By combining wireless sensor technology and machinelearning techniques, projects such as iWater aim to modernizecurrent methods. The purpose of the iWater project is to developa network of smart sensors capable of collecting and analyzingwater quality-related data in real time.To contribute to this goal, a comparative study between theperformance of a centralized machine learning algorithm thatis currently used, and a distributed model based on a federatedlearning algorithm was done. The data used for training andtesting both models was collected by a wireless sensor developedby the iWater project. The centralized algorithm was used asthe basis for the developed distributed model. Due to lack ofsensors, the distributed model was simulated by down-samplingand dividing the sensor data into six data sets representing anindividual sensor. The results are similar for both models andthe developed algorithm reaches an accuracy of 98.41 %. / Vattenövervakning är en nödvändig processför att få inblick i sötvattensekosystems välmående. Dessvärreär det en kostsam och tidskrävande process då insamling avdata vanligen görs manuellt. Genom att kombinera trådlössensorteknologi och maskininlärnings algoritmer strävar projektsom iWater mot att modernisera befintliga metoder.Syftet med iWater är att skapa ett nätverk av smarta sensorersom kan samla in och analysera vattenkvalitetsrelaterade datai realtid. För att bidra till projektmålet görs en jämförandestudie mellan den prediktiva noggrannheten hos en centraliseradmaskininlärningsalgoritm, som i nuläget används, och endistribuerad modell baserad på federerat lärande. Data somanvänds för träning och testning av båda modellerna samladesin genom en trådlös sensor utvecklad inom iWater-projektet.Den centraliserade algoritmen användes som grund för denutvecklade distribuerade modellen. På grund av brist på sensorersimulerades den distribuerade modellen genom nedprovtagningoch uppdelning av data i sex datamängder som representerarenskilda sensorer. Resultaten för båda modellerna var liknandeoch den utvecklade algoritmen har en noggrannhet på 98.41 % / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-308475
Date January 2021
CreatorsAsaad, Robirt, Sanchez Ribe, Carlos
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:180

Page generated in 0.002 seconds