The Long Term Bridge Performance (LTBP) program is an organization within the Federal Highway Administration that inspects, tests, analyzes, and observes, for an extended period of time, a variety of bridge types throughout the United States. Part of the program includes periodic testing of select bridges of a span of 20 years. The Kettle River Bridge located outside of Sandstone, Minnesota was selected for study due to its unique design.
The Kettle River Bridge is a historical steel cantilevered deck arched Pratt truss bridge. The bridge was instrumented with 151 strain gauges on various floor and truss members along with eight displacement gauges strategically placed along the truss. All gauges were read simultaneously as the bridge underwent non-destructive live loading. The recorded gauge readings were analyzed to determine bridge behavior and then used in the assistance of calibrating a working finite-element model.
After a working model was verified the distribution factors for the interior and exterior floor stringers were determined. By using the controlling distribution factor, a load rating for the bridge was determined for both inventory and operating. The distribution factors and load ratings determined using the working finite-element model were then compared to the AAHSTO LRFD specifications.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1900 |
Date | 01 May 2011 |
Creators | Laurendeau, Matthew P. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). |
Page generated in 0.0017 seconds