Using AI to automatically describe images is a challenging task. The aim of this study has been to compare the use of character-based language models with one of the current state-of-the-art token-based language models, im2txt, to generate image captions, with focus on morphological correctness. Previous work has shown that character-based language models are able to outperform token-based language models in morphologically rich languages. Other studies show that simple multi-layered LSTM-blocks are able to learn to replicate the syntax of its training data. To study the usability of character-based language models an alternative model based on TensorFlow im2txt has been created. The model changes the token-generation architecture into handling character-sized tokens instead of word-sized tokens. The results suggest that a character-based language model could outperform the current token-based language models, although due to time and computing power constraints this study fails to draw a clear conclusion. A problem with one of the methods, subsampling, is discussed. When using the original method on character-sized tokens this method removes characters (including special characters) instead of full words. To solve this issue, a two-phase approach is suggested, where training data first is separated into word-sized tokens where subsampling is performed. The remaining tokens are then separated into character-sized tokens. Future work where the modified subsampling and fine-tuning of the hyperparameters are performed is suggested to gain a clearer conclusion of the performance of character-based language models.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-163001 |
Date | January 2019 |
Creators | Keisala, Simon |
Publisher | Linköpings universitet, Interaktiva och kognitiva system |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds