Classifying emails into distinct labels can have a great impact on customer support. By using machine learning to label emails the system can set up queues containing emails of a specific category. This enables support personnel to handle request quicker and more easily by selecting a queue that match their expertise. This study aims to improve the manually defined rule based algorithm, currently implemented at a large telecom company, by using machine learning. The proposed model should have higher F1-score and classification rate. Integrating or migrating from a manually defined rule based model to a machine learning model should also reduce the administrative and maintenance work. It should also make the model more flexible. By using the frameworks, TensorFlow, Scikit-learn and Gensim, the authors conduct five experiments to test the performance of several common machine learning algorithms, text-representations, word embeddings and how they work together. In this article a web based interface were implemented which can classify emails into 33 different labels with 0.91 F1-score using a Long Short Term Memory network. The authors conclude that Long Short Term Memory networks outperform other non-sequential models such as Support Vector Machines and ADABoost when predicting labels for emails.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-15946 |
Date | January 2018 |
Creators | Rosander, Oliver, Ahlstrand, Jim |
Publisher | Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds