Return to search

Short Term Stock Price Prediction Using Machine Learning

This report assesses different machine learning models’accuracies to predict whether a stock will go up or down invalue in a short term. The models that is used is linear regression,LSTM and Elman RNN. These models was trained on historicalprice data from the Nasdaq Stock Exchange. The idea that thereexist a relationship of the price movement of a stock and its futurevalue is called ’techncial analysis’. The result shows that neitherLSTM nor Elman RNN provides any statistical significance ofits accuracy for any of the implementations. Linear regression,provides a significant accuracy for longer time series predictionof the price when trained on 100 days of data and prediction ofits movement after five more days. / I denna report undersöks olika maskininlärningsmodeller noggrannhet för att förutspå om en aktie kommer att gå upp eller ner i värde på kort sikt. De evaluerade maskininlärningsmodellernamodellerna är följande: linjär regression, LSTM och Elman RNN. Dessa modeller tränades med hjälp av historisk prisdata från Nasdaq Stock Exchange. Ide´en om att det finns ett samband mellan prisrörelsen av en aktie och dess kortsiktiga framtida värde är benämnt som ’teknisk analys’. Resultaten visar att varken LSTM eller Elman RNN förmedlar en noggrannhet med statistisk signifikans för någon av de anänvda implementationerna. Linjär regression förmedlar en statistisk signikant noggrannhet för längre tidserie förutsägelser med träningsdata om 100 dagar och förutsägelse av aktiens rörelse efter fem fler dagar. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-322722
Date January 2022
CreatorsRahm, Olov, Wikström, Alexander
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:132

Page generated in 0.0019 seconds