Tragwerke aus Stahlbeton weisen infolge des Kriechens und Schwindens des Betons ein zeitveränderliches Materialverhalten auf. Die Folge sind Umlagerungen der im Querschnittsinneren wirkende Kräfte und im Zeitverlauf zunehmende Verformungen. Zur Beurteilung dieses Langzeitverhaltens sind geeignete Berechnungsmodelle erforderlich, die im Planungsstadium eine zuverlässige Prognose ermöglichen. Dabei spielen nicht nur reine Stahlbetonkonstruktionen eine Rolle, sondern im Zuge von Ertüchtigungsmaßnahmen werden zur Erhöhung der Tragfähigkeit zunehmend auch textile Bewehrungen aus Carbon- und AR-Glasfasern eingesetzt. Durch die beanspruchungsgerecht aufzubringenden Bewehrungsstrukturen und einen speziellen Feinbeton können sehr geringe Betonschichtdicken realisiert werden. Es entsteht ein Verbundquerschnitt mit unterschiedlichen Betonrezepturen, gleichfalls unterschiedlichem Betonalter und mit mehreren verschiedenen Bewehrungskomponenten. Um Aussagen zum Langzeitverhalten derartiger Konstruktionen treffen zu können, ist eine ganzheitliche Betrachtung über alle diese im Verbund liegenden Komponenten mit ihren jeweiligen Materialeigenschaften erforderlich.
Im Rahmen der vorliegenden Arbeit sind in einem ersten Schritt die Stoffgesetze für die beteiligten Materialien Beton, Stahl- und Textilfaserbewehrung zu formulieren. Im Mittelpunkt steht dabei das viskoelastische Verhalten des Betons, für dessen baumechanische Beschreibung ein geeignetes rheologisches Modell in Form einer Feder-Dämpfer-Kombination dargestellt und die zugehörige Spannungs-Dehnungs-Zeit-Beziehung hergeleitet wird. Ferner wird aufgezeigt, wie die erforderlichen Materialparameter mit Hilfe üblicher Berechnungsansätze für Kriechen und Schwinden (z.B. nach EUROCODE 2) kalibriert werden können. Die betrachteten Textilfasern werden zunächst mit linear-elastischem Verhalten in Rechnung gestellt. Auf alternative Ansätze, die auch hier viskoelastische Eigenschaften berücksichtigen, wird hingewiesen, und das Berechnungsmodell ist dahingehend erweiterbar gestaltet.
In einem zweiten Schritt werden die Materialmodelle der Einzelkomponenten nach den mechanischen Grundprinzipien von Gleichgewicht und Verträglichkeit und unter der BERNOULLIschen Annahme eines eben bleibenden Querschnittes miteinander in Beziehung gesetzt. Hierfür ist eine inkrementelle Vorgehensweise erforderlich, die mit dem Zeitpunkt der ersten Lastaufbringung beginnt und schrittweise den darauffolgenden Zustand berechnet. Im Ergebnis entsteht ein Algorithmus, der die am Querschnitt stattfindenden Veränderungen im Spannungs- und Dehnungsverhalten unter Einbeziehung der Stahlbewehrung sowie einer ggf. vorhandenen Textilbetonschicht wirklichkeitsnah erfaßt. Für statisch bestimmte Systeme mit bekanntem Schnittkraftverlauf wird gezeigt, wie sich so zu jeder Zeit an jeder Stelle der vorliegende Dehnungszustand und aus diesem über die Krümmung die Durchbiegung berechnen läßt.
Der dritte und für viele praktische Anwendungen wichtigste Schritt besteht darin, die am Querschnitt hergeleiteten Beziehungen in ein finites Balkenelement zu überführen und dieses in ein FE-Programm zu implementieren. Auch das gelingt auf inkrementellem Wege, wobei für jedes Zeitinkrement die Spannungs- und Verformungszuwächse aller Elemente mit Hilfe des NEWTON-RAPHSON-Verfahrens über die Iteration des Gleichgewichtszustandes am gesamten System bestimmt werden. Hierzu werden einige Beispiele vorgestellt, und es werden die Auswirkungen des Kriechens und Schwindens mit den sich daraus ergebenden Folgen für das jeweilige Tragwerk erläutert. Ferner wird gezeigt, wie textilbewehrte Verstärkungsmaßnahmen gezielt eingesetzt werden können, um das Trag- und Verformungsverhalten bestehender Bauwerke unter Beachtung des zeitveränderlichen Materialverhaltens kontrolliert und bedarfsgerecht zu beeinflussen. / Structures of reinforced concrete show a time-varying material behaviour due to creeping and shrinking of the concrete. This results in the rearrangement of the stresses in the cross-section and time-depending increase of the deformations. Qualified calculation models enabling a reliable prediction during the design process are necessary for the assessment of the long-term behavior. Not only pure reinforced concrete structures play an important role, but within retrofitting actions textile reinforcements of carbon and AR-glass fibres are applied in order to enhance the load-bearing capacity. A small concrete-layer-thickness can be achieved by the load-compatible application of reinforced textile configurations and the usage of a special certain fine-grained concrete. It leads to a composite section of different concrete recipes, different concrete ages and also several components of reinforcement. To give statements for the long-term behaviour of such constructions, a holistic examination considering all this influencing modules with their particular material properties is necessary.
Within this dissertation in a first step the material laws of the participated components, as concrete, steel and textile reinforcement, are defined. The focus is layed on the visco-elastic behaviour of the concrete. For its mechanical specification a reliable rheological model in terms of a spring-dashpot-combination is developed and the appropriate stress-strain-time-relation is derived. Furthermore the calibration of the required material parameters considering creep and shrinkage by means of common calculation approaches (e.g. EUROCODE 2) is demonstrated. For the textile fibres a linear-elastic behaviour is assumed within the calculation model. It is also refered to alternative approaches considering a visco-elastic characteristic and the calculation model is configured extendable to that effect.
In a second step the material models of the single components are correlated taking into account the mechanical basic principles of equilibrium and compatibility as well as the BERNOULLIan theorem of the plane cross-section. Therefore an incremental calculation procedure is required, which starts at the moment of the first load-application and calculates the subsequent configuration step by step. In the result an algorithm is derived, that realistically captures the occuring changings of stress and strain in the cross-section by considering the steel reinforcement as well as a possibly existing layer of textile concrete. For statically determined systems with known section force status it is demonstrated how to calculate the existing condition of strain and following the deflection via the curvaturve at every time and at each position.
The third step - for many practical applications the most important one - is the transformation of the derived relations at the cross-section into a finite beam-element and the implementation of this in a FE-routine. This also takes place in an incremental way, whereat for each time-increment the increase of stress and strain for all elements is identified by using the NEWTON-RAPHSON-method within the iteration process for the equilibrium condition of the whole system. Meaningful numerical examples are presented and the effects of creep and shrinkage are explained by depicting the consequences for the particular bearing structure. Moreover it is shown how the purposeful use of textile reinforcement strengthening methodes can influence and enhance the load-bearing and deflection characteristics of existing building constructions by considering the time-varying material behaviour.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25088 |
Date | 08 July 2009 |
Creators | Seidel, André |
Contributors | Zastrau, Bernd W., Graf, Wolfgang |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds