In modern China, air pollution has become an essential environmental problem. Over the last 2 years, the air pollution problem, as measured by PM 2.5 (particulate matter) is getting worse. My report aims to carry out a longitudinal data analysis of the air quality index (AQI) in 3 main economic zones in China. Longitudinal data, or repeated measures data, can be viewed as multilevel data with repeated measurements nested within individuals. I arrive at some conclusions about why the 3 areas have different AQI, mainly attributed to factors like population, GDP, temperature, humidity, and other factors like whether the area is inland or by the sea. The residual variance is partitioned into a between-zone component (the variance of the zone-level residuals) and a within-zone component (the variance of the city-level residuals). The zone residuals represent unobserved zone characteristics that affect AQI. In this report, the model building is mainly according to the sequence described by West et al (2007) with respect to the bottom-up procedures and the reference by Singer, J. D., & Willett, J. B (2003) which includes the non-linear situations. This report also compares the quartic curve model with piecewise growth model with respect to this data. The final model I reached is a piece wise model with time-level and zone-level predictors and also with temperature by time interactions. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/26432 |
Date | 09 October 2014 |
Creators | Wu, Kailin |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0019 seconds