Return to search

Precipitation and abnormal grain growth in low alloy steels

The objective of this thesis is to further understand the austenite Abnormal Grain Growth (AGG) phenomenon in relation with precipitation state in a low alloy steel. The abnormal grain growth is addressed from both experimental and numerical modeling point of view. Prior austenite grain size distribution, precipitation volume fraction and size distribution evolution of the different heat treated states are experimentally determined for two different industrial alloys (steel-A and steel-B) in different heat treated states and experimental results are compared with model predictions. A two-step modeling technique is adopted in this study: precipitation modeling and abnormal/normal grain growth modeling. The abnormal/normal grain growth modeling is done using a simplified analytical model where the grain growth is assumed to be driven by the decrease in interfacial energy. Both the conventional Zener pinning and corner pinning by precipitate is considered as boundary movement retarding forces. The precipitation model is based on the Classical Nucleation and Growth Theories. The assumption of homogeneous precipitate nucleation and growth gave a good prediction of volume fraction, mean radius and size distribution in comparison with the experimental results. Two coupled modeling approaches of abnormal grain growth and precipitation model: ①Soft coupling and ②Dynamic coupling; shed light on the different physical parameters controlling the grain growth condition in a particular material's state. A reasonable prediction of AGG and NGG is obtained from both approaches. The dynamic coupled modeling enabled us to paint a comprehensive time-temperature mechanism map of grain growth conditions. It is found that AGG in the austenitic state depends strongly on the initial grain size distribution and precipitation state. The modeling and the experimental results showed that the precipitation state evolution (increasing or decreasing volume fraction) also impact normal/abnormal grain growth. Plausible explanations in relation with the mean austenite grain size and the precipitation state are derived for the AGG phenomenon from the present work.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01015867
Date04 October 2013
CreatorsRazzak, Mohammad
PublisherINSA de Lyon
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0017 seconds