Return to search

Hydraulics of IDEal Drip Irrigation Systems

The hydraulics of IDEal drip irrigation system components were analyzed under controlled laboratory conditions and the results can be applied to the design of IDEal systems. The hydraulic loss coefficient for the lateral-submain connector valves was determined based on laboratory measurements. It was found that the hydraulic loss due to friction in the lay-flat laterals can be accurately estimated with standard friction loss equations using a smaller effective diameter based on the wall thickness and inlet pressure head. The equivalent length barb loss, expressed as an equivalent length of lateral, was calculated for button emitters, as well as for micro-tubes inserted to lengths of 5 and 10 cm. It was concluded that the barb loss is essentially constant over the micro-tube insertion range of 5-10 cm. The head-discharge relationship and coefficient of manufacturer's variation of pre-punched lateral holes (without emitters), button emitters, and micro-tubes were characterized.
Finally, several IDEal drip irrigation systems in the Central Rift Valley of Ethiopia were evaluated in the field. Recommendations were given for future research and improvements in the manufacturing, installation, operation, and maintenance of IDEal drip irrigation equipment.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1287
Date01 May 2009
CreatorsThompson, Evan J
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0017 seconds