Return to search

Validation of Low Resistance Filters for Gas/Vapour Sampling.

Traditional occupational hygiene assessment of occupational exposures to organic gases and vapours rely on low flow (<200 ml/min) NIOSH sorbent tubes. This work investigates 3M charcoal filter media (JK50 and JK40, 3M, Inc.) for collection and analysis of organic vapours across 0.1 ¿ 5 l/min. To enable this work, a custom exposure facility was constructed and validated within which organic analyte gas/vapour concentrations could be introduced at known concentrations while controlling environmental variables such as temperature and humidity and other variables. This facility enabled experiments designed to investigate collection and desorption efficiencies across a range of sample flow rates, temperature and humidity conditions for both NIOSH sorbent tubes (e.g. SKC tube) and 3M charcoal filter media. As a result of the investigations described in this thesis, the following conclusions are drawn.
Performance of the 3M charcoal filter media for collection and desorption efficiencies for loading, storage time, humidity and breakthrough at low flow rates (<0.5 l/min) were found comparable to the SKC sorbent tube. It is concluded that 3M charcoal media (JK50 and JK40) are suitable for sampling and analyses of hydrocarbons at flow rates <0.5 l/min.
The collection efficiencies of the 3M charcoal filter media were investigated at high flow rates (>0.5l/min) for the same parameters, i.e., loading, temperature and humidity. It is concluded that 3M charcoal filter media can be used with confidence in sampling and analysis of airborne hydrocarbons up to 5 l/min.
The Wheeler-Jonas model was found to satisfactorily predict the adsorption kinetics of the 3M charcoal filter media at different loading values of hydrocarbons. It was therefore concluded that the model can be applied to determine the suitable amount of 3M charcoal filter media prior to sampling for a given loading.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/4257
Date January 2009
CreatorsAlarfaj, Ayman M.A.
ContributorsDennis, John, Heron, Carl P., El-Khashab, M.I.
PublisherUniversity of Bradford, Division of Archaeological, Geographical and Environmental Sciences School of Life Sciences
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0026 seconds