Referências de tensão integradas sempre foram um bloco fundamental de qualquer sistema eletrônico e um importante tópico de pesquisa que tem sido estudado extensivamente nos últimos 50 anos. Uma tensão de referência é um circuito que provê uma tensão estável com baixa sensibilidade a variações em temperatura, alimentação, carga, características do processo de fabricação e tensões mecânicas de encapsulamento. Elas são normalmente implementadas através da soma ponderada de dois fenômenos físicos diferentes, com comportamentos em temperatura opostos. Normalmente, a tensão térmica, relacionada à constante de Boltzmann e à carga do elétron, fornece uma dependência positiva com temperatura, enquanto que a tensão base-emissor VBE de um transistor bipolar ou a tensão de limiar de um MOSFET fornece o termo complementar. Um bloco auxiliar é às vezes utilizado para fornecer as correntes de polarização do circuito, e outros blocos adicionais implementam a soma ponderada. A evolução da tecnologia de processos é o principal fator para aplicações em baixa tensão, enquanto que a emergência de dispositivos portáteis operados a bateria, circuitos biomédicos implantáveis e dispostivos de captura de energia do ambiente restringem cada circuito a consumir o mínimo possivel. Portanto, alimentações abaixo de 1 V e consumos na ordem de nanoWatts se tornaram características fundamentais de tais circuitos. Contudo, existem diversos desafios ao projetar referências de tensão de alta exatidão em processos CMOS modernos sob essas condições. As topologias tradicionais não são adequadas pois elas provêm uma referência de tensão acima de 1 V, e requerem resistências da ordem de G para atingir tão baixo consumo de potência, ocupando assim uma grande área de silício. Avanços recentes atingiram tais níveis de consumo de potência, porém com limitada exatidão, custosos procedimentos de calibração e grande área ocupada em silício. Nesta dissertação apresentam-se duas novas topologias de circuitos: uma tensão de junção bipolar com compensação de curvatura que não utiliza resistores e é auto-polarizada; e um circuito de referência bandgap sem resistores que opera abaixo de 1 V (também chamado de sub-bandgap). Ambos circuitos operam com consumo na ordem de nanoWatts e ocupam pequenas áreas de silício. Resultados de simulação para dois processos diferentes, 180 nm e 130 nm, e resultados experimentais de uma rodada de fabricação em 130 nm apresentam melhorias sobre tais limitações, mantendo as características desejadas de não conter resistores, ultra baixo consumo, baixa tensão de alimentação e áreas muito pequenas. / Integrated voltage references have always been a fundamental block of any electronic system, and an important research topic that has been extensively studied in the past 50 years. A voltage reference is a circuit that provides a stable voltage with low sensitivity to variations in temperature, supply, load, process characteristics and packaging stresses. They are usually implemented through the weighted sum of two independent physical phenomena with opposite temperature dependencies. Usually the thermal voltage, related to the Boltzmann’s constant and the electron charge, provides a positive temperature dependence, while the silicon bandgap voltage or a MOSFET’s threshold voltage provide the complementary term. An auxiliary biasing block is sometimes necessary to provide the necessary currents for the circuit to work, and additional blocks implement the weighted sum. The scaling of process technologies is the main driving factor for low voltage operation, while the emergence of portable battery-operated, implantable biomedical and energy harvesting devices mandate that every circuit consume as little power as possible. Therefore, sub-1 V supplies and nanoWatt power have become key characteristics for these kind of circuits, but there are several challenges when designing high accuracy voltage references in modern CMOS technologies under these conditions. The traditional topologies are not suitable because they provide a reference voltage above 1 V, and to achieve such power consumption levels would require G resistances, that occupy a huge silicon area. Recent advances have achieved these levels of power consumption but with limited accuracy, expensive calibration procedures and large silicon area.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/107131 |
Date | January 2014 |
Creators | Mattia Neto, Oscar Elisio |
Contributors | Klimach, Hamilton Duarte, Bampi, Sergio |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds