Return to search

The Sequence and Function Relationship of Elastin: How Repetitive Sequences can Influence the Physical Properties of Elastin

Elastin is an essential extracellular protein that is a key component of elastic fibres, providing elasticity to cardiac, dermal, and arterial tissues. During the development of the human cardiovascular system, elastin self-assembles before being integrated into fibres, undergoing no significant turnover during the human lifetime. Abnormalities in elastin can adversely affect its self-assembly, and may lead to malformed elastic fibres. Due to the longevity required of these fibres, even minor abnormalities may have a large cumulative effect over the course of a lifetime, leading to late-onset vascular diseases. This thesis project has identified important, over-represented repetitive elements in elastin which are believed to be important for the self-assembly and elastomeric properties of elastin. Initial studies of single nucleotide polymorphisms (SNPs) from the HapMap project and dbSNP resulted in a set of genetic variation sites in the elastin gene. Based on these studies, glycine to serine and lysine to arginine substitutions were introduced in elastin-like polypeptides. The self-assembly properties of the resulting elastin-like polypeptides were observed under microscope and measured using absorbance at 440nm. Assembled polypeptides were also cross-linked to form thin membranes whose mechanical and physical properties were measured and compared. These mutations resulted in markedly different behavior than wild-type elastin-like proteins, suggesting that mutations in the repetitive elements of the elastin sequence can lead to adverse changes in the physical and functional properties of the resulting protein. Using next-generation sequencing, patients with thoracic aortic aneurysms are being genotyped to discover polymorphisms which may adversely affect the self-assembly properties of elastin, providing a link between genetic variation in elastin and cardiovascular disease.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/31780
Date09 January 2012
CreatorsHe, David
ContributorsParkinson, John
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds