Return to search

X-ray Exposure on Low Dielectric Constant Materials

Abstract
As integrated circuit dimensions continue to shrink, interconnect RC delay becomes an increasingly serious problem. Fabrication of interconnect structures using new materials of low resistivity and low permittivity to replace the traditional Al and SiO2 interconnect technology is in high demand. Specially, copper and low dielectric constant (low-k) polymers show great promise. Among various low-k materials, spin-on glass (SOG) materials have been widely used as an interlayer dielectric in multilevel interconnections because they are applied easily and have relatively low process costs. One class of materials, which offers many of properties of silica (SiO2) hardness, thermal and dimensional stability etc.) are the HOSP (Hybrid Organic-Siloxane-Polymer)and HSQ (Hydrogen Silsesquioxane) represent an important member of this family. HOSP and HSQ exhibits a relatively low dielectric constant (k=2.6-2.8) as compared to SiO2 (k=4.0).It is intrinsically hydrophobic, has reasonable mechanical hardness, and possesses exceptional thermal and dimensional stability (in excess of 400¢J). For these reasons, HOSP and HSQ represent an excellent candidate for applications on the multilevel interconnect architecture. On the other hand, etching and PR removal are key technology during the manufactures of multilevel interconnects. X-ray lithography process is adopted to avoid these issues. As a result, a novel X-ray lithography technology for the low-k interlayer has been proposed for fabrication of IC. And it is a low cost process.
In this work, the characteristics of PR removal have been investigated. Experimental results have shown that the dielectric properties of HOSP and HSQ are degraded by PR removal process. The X-ray exposure will solve these problems and it will be a useful tool in advance ICs fabrication. The advantage of the X-ray exposure is the direct patterning, avoids the issues during the etching and photoresist striping processes. The part of film exposed by X-ray will be cured and the other part could be dissolved with the solvent. Strictly speaking, these two issues will be overcome by the X-ray curing.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0704101-094147
Date04 July 2001
CreatorsLin, Zen-Kuan
ContributorsWater, J.T. Sheu, J.Y. Zeng, T.C. Chang, P.T. Liu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0704101-094147
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.002 seconds