Volatile organic compound (VOC) contamination of low permeability geologic deposits due to Dense Non-Aqueous Phase Liquid (DNAPL) penetration through fractures is exceptionally difficult to remediate using in-situ methods as the low permeability of the sediments limits the delivery of reagents proximal to contaminant mass. This thesis examines in detail the extent of organic contaminant treatment away from hydraulically-induced fractures injected with particulate Zero Valent Iron as (1) ZVI and glycol (G-ZVI) and (2) an emulsified ZVI (EZVI) mixture within a contaminated glaciolacustrine clayey deposit. Continuous vertical cores were collected through the treatment zone at 2 and 2.5 years after substrate injections and soil sub-sample spacing was scaled to show the extent of the treatment zone adjacent to the ZVI in the fractures, expecting the treatment would be controlled by diffusion limited transport to the reaction zone. Analytical results show evidence of treatment in both the EZVI and the G-ZVI containing fractures with the presence of degradation by-products and reduced VOC concentrations in the fracture and surrounding clay matrix. / Natural Sciences and Engineering Research Council of Canada, University Consortium for Field-Focused Groundwater Contamination Research
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/3664 |
Date | 18 May 2012 |
Creators | Ramdial, Brent |
Contributors | Parker, Beth |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0016 seconds