Significant progress has been made towards developing an effective solution method for predicting low-speed flows through vertical-axis wind turbines. A Godunov-type finite-volume scheme has been developed for the solution of the Euler equations in two-dimensions on a multi-block mesh. The proposed algorithm features a parallel block-based adaptive mesh refinement scheme and a mesh adjustment procedure to enable straightforward meshing of irregular solid boundaries. A low-Mach-Number preconditioner is used in conjunction with a dual timestepping scheme to reduce the computational costs of simulating low-speed unsteady flows. A second-order backwards differencing time-marching scheme is used for the outer physicaltime discretization, and an explicit optimally-smoothing multi-stage time-stepping scheme with multigrid acceleration is used for the inner pseudo-time loop. Results are presented for various low-speed flows that demonstrate the suitability of the algorithms for wind turbine flows. Additional theory and discussion are also presented for extension of the schemes to the full Navier-Stokes equations.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/29648 |
Date | 29 August 2011 |
Creators | Wong, Samuel Heng Hsin |
Contributors | Groth, Clinton P. T. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0033 seconds