This thesis deals with the characterization of electrochemical corrosion properties of magnesium alloys as promising materials for biomedical applications. The wrought alloys AZ31 and AZ61 were used and exposed to corrosive environments of Hanks solutions (SBF) to simulate environmental conditions in living organisms. For the evaluation of the surfaces was used scanning electron microscopy (SEM) with elemental analysis measured by energy-dispersive spectroscopy (EDS). Short-term (5 min) and long-term (72 h) corrosion tests were conducted in order to optimize the measurement methodology and obtain corrosion parameters - especially corrosion potential (Ekor), corrosion current density (ikor) and polarisation resistance (RP). To evaluation of the short-term tests were by potentiodynamic tests, namely the linear polarization (LP) test. Long-term tests were measured by electrochemical impedance spectroscopy (EIS). Effects of the composition of the alloys (AZ31 and AZ61), surface treatment (grinding and polishing) and the composition of the solution (SBF without Ca, Mg, and with Ca, Mg) were compared. Complex corrosion behaviour in time was characterized and corrosion mechanisms were discussed.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:217106 |
Date | January 2015 |
Creators | Minda, Jozef |
Contributors | Wasserbauer, Jaromír, Tkacz, Jakub |
Publisher | Vysoké učení technické v Brně. Fakulta chemická |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0458 seconds