The area of speech recognition by machine is one of the most popular and complicated subjects in the current multimedia field. Linear predictive coding (LPC) is a useful technique for voice coding in speech analysis and synthesis. The first objective of this research was to establish a prototype of the residual-excited linear predictive (RELP) vocoder system in a real-time environment. Although its transmission rate is higher, the quality of synthesized speech of the RELP vocoder is superior to that of other vocoders. As well, it is rather simple and robust to implement. The RELP vocoder uses residual signals as excitation rather than periodic pulse or white noise. The RELP vocoder was implemented with Texas Instruments TMS320C6711 DSP starter kit (DSK) using C.
Identifying vowel sounds is an important element in recognizing speech contents. The second objective of research was to explore a method of characterizing vowels by means of parameters extracted by the RELP vocoder, which was not known to have been used in speech recognition, previously. Five English vowels were chosen for the experimental sample. Utterances of individual vowel sounds and of the vowel sounds in one-syllable-words were recorded and saved as WAVE files. A large sample of 20-ms vowel segments was obtained from these utterances. The presented method utilized 20 samples of a segment's frequency response, taken equally in logarithmic scale, as a LPC frequency response vector. The average of each vowel's vectors was calculated. The Euclidian distances between the average vectors of the five vowels and an unknown vector were compared to classify the unknown vector into a certain vowel group.
The results indicate that, when a vowel is uttered alone, the distance to its average vector is smaller than to the other vowels' average vectors. By examining a given vowel frequency response against all known vowels' average vectors, individually, one can determine to which vowel group the given vowel belongs. When a vowel is uttered with consonants, however, variances and covariances increase. In some cases, distinct differences may not be recognized among the distances to a vowel's own average vector and the distances to the other vowels' average vectors. Overall, the results of vowel characterization did indicate an ability of the RELP vocoder to identify and classify single vowel sounds.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-12202003-142739 |
Date | 09 January 2004 |
Creators | Taguchi, Akihiro |
Contributors | Gander, Robert, Chowdhury, Nurul A., Bolton, Ronald J., Takaya, Kunio |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-12202003-142739/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0022 seconds