For sequences of related linear systems, the computation of a preconditioner for every system can be expensive. Often a fixed preconditioner is used, but this may not be effective as the matrix changes. This research examines the benefits of both reusing and recycling preconditioners, with special focus on ILUTP and factorized sparse approximate inverses and proposes an update that we refer to as a sparse approximate map or SAM update. Analysis of the residual and eigenvalues of the map will be provided. Applications include the Quantum Monte Carlo method, model reduction, oscillatory hydraulic tomography, diffuse optical tomography, and Helmholtz-type problems. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/52945 |
Date | 15 June 2015 |
Creators | Grim-McNally, Arielle Katherine |
Contributors | Mathematics, de Sturler, Eric, Gugercin, Serkan, Chung, Julianne |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0016 seconds