We investigate how the formation of heterogeneity and structures in flows through explicit porous microstructures depends upon the geometric and topological observables of the porous medium. Using direct numerical simulations of single-phase, isothermal, laminar fluid flow through realistic three-dimensional stochastically generated pore structures, hereafter referred to as pore spaces, the characteristics of the resulting steady state velocity fields are related to physical characteristics of the pore spaces. The results suggest that the spatially variable resistance offered by the geometry and topology of the pore space induces a highly heterogeneous fluid velocity field therein. Focus is placed on three different length scales: macroscopic (cm), mesoscopic (mm), and microscopic (microns). At the macroscopic length scale, volume averaging is used to relate porosity, mean hydraulic radius, and their product to the permeability of the pore space. At the mesoscopic scale, the effect of a medium's porosity on fluid particle trajectory attributes, such as passage time and tortuosity, is studied. At the final length scale, that of the microscopic in-pore fluid dynamics, finite time Lyapunov exponents are used to determine expanding, contracting, and hyperbolic regions in the flow field, which are then related to the local structure of the pore space. The results have implications to contaminant transport, mixing, and how chemical reactions are induced at the pore-scale. A description of the adopted numerical methods to simulate flow and generate the pore space are provided as well.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/316897 |
Date | January 2014 |
Creators | Hyman, Jeffrey De’Haven |
Contributors | Winter, C. Larrabee, Winter, C. Larrabee, Indik, Robert, Restrepo, Juan, Neuman, Shlomo P. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0019 seconds