This thesis consists of several problems concerning numerical approximations for stochastic differential equations, and is divided into three parts. The first one is on the integrability and asymptotic stability with respect to a certain class of Lyapunov functions, and the preservation of the comparison theorem for the explicit numerical schemes. In general, those properties of the original equation can be lost after discretisation, but it will be shown that by some suitable modification of the Euler scheme they can be preserved to some extent while keeping the strong convergence rate maintained. The second part focuses on the approximation of iterated stochastic integrals, which is the essential ingredient for the construction of higher-order approximations. The coupling method is adopted for that purpose, which aims at finding a random variable whose law is easy to generate and is close to the target distribution. The last topic is motivated by the simulation of equations driven by Lévy processes, for which the main difficulty is to generalise some coupling results for the one-dimensional central limit theorem to the multi-dimensional case.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:738938 |
Date | January 2017 |
Creators | Zhang, Xiling |
Contributors | Szpruch, Lukasz ; Gyongy, Istvan |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/28931 |
Page generated in 0.0019 seconds