Return to search

Effect of temperature and genetic structure on adaptive evolution at a dynamic range edge in the North American gypsy moth (Lymantria dispar L.)

The study of biological invasions is not only essential to regulate their vast potential for ecological and economical harm, they offer a unique opportunity to study adaptive evolution in the context of recent range expansions into novel environments. The North American invasion of the gypsy moth, Lymantria dispar L., since its introduction in 1869 to Massachusetts, has expanded westward to Minnesota, northward to Canada, and southward to North Carolina. Fluctuating range dynamics at the southern invasive edge are heavily influenced by heat exposure over their optimal (supraoptimal) during the larval stage of development. We coupled genomic sequencing with reciprocal transplant and laboratory-rearing experiments to examine the interactions of phenotypic, genetic, and environmental variation under selective supraoptimal regimes. We demonstrate that while there is no evidence to support local adaptation in the fitness-related physiological traits we measured, there are clear genomic patterns of adaptation due to differential survival in higher temperatures. Mapping of loci identified as contributing to local adaptation in a selective environment and those associated with phenotypic variation highlighted that variation in larval development time is partly driven by pleiotropic loci also affecting survival. Overall, I highlight the necessity and inferential power gained through replicating environmental conditions using both phenotypic and genome-wide analyses.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-6130
Date01 January 2017
CreatorsFaske, Trevor M
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0023 seconds