Return to search

Phospholipid Profiles for Phenotypic Characterization of Adipose-Derived Multipotent Mesenchymal Stromal Cells

Multipotent mesenchymal stromal cells (MSC) have emerged as therapeutic tools for a
wide range of pathological conditions. Yet, the still existing deficits regarding MSC
phenotype characterization and the resulting heterogeneity of MSC used in different
preclinical and clinical studies hamper the translational success. In search for novel
MSC characterization approaches to complement the traditional trilineage
differentiation and immunophenotyping assays reliably across species and culture
conditions, this study explored the applicability of lipid phenotyping for MSC
characterization and discrimination. Human peripheral blood mononuclear cells
(PBMC), human fibroblasts, and human and equine adipose-derived MSC were used
to compare different mesodermal cell types and MSC from different species. For MSC,
cells cultured in different conditions, including medium supplementation with either fetal
bovine serum or platelet lysate as well as culture on collagen-coated dishes, were
additionally investigated. After cell harvest, lipids were extracted by chloroform/
methanol according to Bligh and Dyer. The lipid profiles were analysed by an
untargeted approach using liquid chromatography coupled to mass spectrometry (LCMS)
with a reversed phase column and an ion trap mass spectrometer. In all samples,
phospholipids and sphingomyelins were found, while other lipids were not detected with
the current approach. The phospholipids included different species of phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS)
in all cell types, whereas phosphatidylglycerol (PG) species were only present in MSC.
MSC from both species showed a higher phospholipid species diversity than PBMC and
fibroblasts. Few differences were found between MSC from different culture conditions,
except that human MSC cultured with platelet lysate exhibited a unique phenotype in that
they exclusively featured PE O-40:4, PG 38:6 and PG 40:6. In search for specific and
inclusive candidate MSC lipid markers, we identified PE O-36:3 and PG 40:7 as potentially
suitable markers across culture conditions, at which PE O-36:3 might even be used across
species. On that basis, phospholipid phenotyping is a highly promising approach for MSC
characterization, which might condone some heterogeneity within the MSC while still
achieving a clear discrimination even from fibroblasts. Particularly the presence or absence
of PG might emerge as a decisive criterion for future MSC characterization.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:84512
Date03 April 2023
CreatorsBurk, Janina, Melzer, Michaela, Hagen, Alina, Lips, Katrin Susanne, Trinkaus, Katja, Nimptsch, Ariane, Leopold, Jenny
PublisherFrontiers Research Foundation
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation2296-634X, 784405

Page generated in 0.0057 seconds