Return to search

Identifying Regulators of Lysosome Reformation: Inhibitor Screen in Mammalian Cell Culture

Lysosomes are membrane-bound organelles that have diverse functions in eukaryotic cells. Malfunctions in lysosomes result in a range of diseases known as Lysosomal Storage Disorders. After fusing with late endosomes to form hybrid organelles, lysosomes bud off and are reformed in a poorly characterized process known as lysosome formation or reformation. Only one mammalian regulator of lysosome formation has been identified, the non-selective cation channel TRPML1. In the highly similar process of Autophagic Lysosome Reformation (ALR), three known regulators have also been identified, the vesicle-coating protein clathrin and two phosphatidylinositol kinases that catalyze the formation of the membrane phospholipid PI(4,5)P₂. Here, we use an inhibitor screen coupled with a live imaging assay to identify the actin microfilament as a novel regulator of lysosome formation.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/613352
Date January 2016
CreatorsLiu, Ian
ContributorsFares, Hanna, Laney, Jeff, Buchan, Ross
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds