Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-12-01T23:34:00Z
No. of bitstreams: 1
DanielHolandaNoronha_DISSERT.pdf: 2617561 bytes, checksum: 88cfc246d074eabfd971d5b81edbf109 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-12-05T21:07:17Z (GMT) No. of bitstreams: 1
DanielHolandaNoronha_DISSERT.pdf: 2617561 bytes, checksum: 88cfc246d074eabfd971d5b81edbf109 (MD5) / Made available in DSpace on 2017-12-05T21:07:18Z (GMT). No. of bitstreams: 1
DanielHolandaNoronha_DISSERT.pdf: 2617561 bytes, checksum: 88cfc246d074eabfd971d5b81edbf109 (MD5)
Previous issue date: 2017-11-20 / A import?ncia do uso de FPGAs como aceleradores vem crescendo fortemente nos ?ltimos
anos. Companhias como Amazon e Microsoft est?o incorporando FPGAs em seus data
centers, objetivando especialmente acelerar algoritmos em suas ferramentas de busca. No
centro dessas aplica??es est?o algoritmos de aprendizado de m?quina, como ? o caso da
M?quina de Vetor de Suporte (SVM). Entretanto, para que essas aplica??es obtenham
a acelera??o desejada, o uso eficiente dos recursos das FPGAs ? necess?rio. O projeto
possui como objetivo a implementa??o paralela em hardware tanto da fase feed-forward
de uma M?quina de Vetores de Suporte (SVM) quanto de sua fase de treinamento. A
fase feed-forward (infer?ncia) ? implementada utilizando o kernel polinomial e de maneira
totalmente paralela, visando obter a m?xima acelera??o poss?vel ao custo de uma maior
utiliza??o da ?rea dispon?vel. Al?m disso, a implementa??o proposta para a infer?ncia ?
capaz de computar tanto a classifica??o quanto a regress?o utilizando o mesmo hardware.
J? o treinamento ? feito utilizando Otimiza??o Sequencial M?nima (SMO), possibilitando
a resolu??o da complexa otimiza??o da SVM atrav?s de passos simples. A implementa??o
da SMO tamb?m ? feita de modo extremamente paralelo, fazendo uso de t?cnicas para
acelera??o como a cache do erro. Ademais, o Kernel Amig?vel ao Hardware (HFK) ?
utilizado para diminuir a ?rea utilizada pelo kernel, permitindo que um n?mero maior
de kernels seja implementado em um chip de mesmo tamanho, acelerando o treinamento.
Ap?s a implementa??o paralela em hardware, a SVM ? validada por simula??o e s?o feitas
an?lises associadas ao desempenho temporal da estrutura proposta, assim como an?lises
associadas ao uso de ?rea da FPGA. / The importance of Field-Programmable Gate Arrays as compute accelerators has dramatically
increased during the last couple of yers. Many companies such as Amazon, IBM and
Microsoft included FPGAs in their data centers aiming to accelerate their search engines.
In the center of those applications are many machine learning algorithms, such as Support
Vector Machines (SVMs). For FPGAs to thrive in this new role, the effective usage of
FPGA resources is required. The project?s main goal is the parallel FPGA implementation
of both the feed-forward phase of a Support Vector Machine as well as its training phase.
The feed-forward phase (inference) is implemented using the polynomial kernel in a highly
parallel way in order to obtain maximum throughput at the cost of some extra area.
Moreover, the inference implementation is capable of computing both classification and
regression using a single hardware. The training phase of the SVM is implemented using
Sequential Minimal Optimization (SMO), which enables the resolution of a complex convex
optimization problem using simple steps. The SMO implementation is also highly parallel
and uses some acceleration techniques, such as the error cache. Moreover, the Hardware
Friendly Kernel (HFK) is used in order to reduce the kernel?s area, enabling the increase in
the number of kernels per area. After the parallel implementation in hardware, the SVM is
validated by simulation. Finally, analysis associated with the temporal performance of the
proposed structure, as well as analysis associated with FPGA?s area usage are performed.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/24416 |
Date | 20 November 2017 |
Creators | Noronha, Daniel Holanda |
Contributors | 02099790469, D?ria Neto, Adri?o Duarte, 10749896434, Beck Filho, Antonio Carlos Schneider, 97622028053, Oliveira, Jos? Alberto Nicolau de, 09612890404, Fernandes, Marcelo Augusto Costa |
Publisher | PROGRAMA DE P?S-GRADUA??O EM ENGENHARIA EL?TRICA E DE COMPUTA??O, UFRN, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds