This work is dedicated to the control of the accuracy of computational simulations of sound propagation and scattering. Assuming time-harmonic behaviour, the mathematical models are given as boundary value problems for the Helmholtz equation <i>Delta u+k2u=0 </i> in <i>Oméga</i>. A distinction is made between interior, exterior and coupled problems and this work focuses mainly on interior uncoupled problems for which the Helmholtz equation becomes singular at eigenfrequencies.
As in other application fields, error control is an important issue in acoustic computations. It is clear that the numerical parameters (mesh size h and degree of approximation p) must be adapted to the physical parameter k. The well known ‘rule of the thumb’ for the h version with linear elements is to resolve the wavelength <i>lambda=2 pi k-1</i> by six elements characterising the approximability of the finite element mesh. If the numerical model is stable, the quality of the numerical solution is entirely controlled by the approximability of the finite element mesh. The situation is quite different in the presence of singularities. In that case, <i>stability</i> (or the lack thereof) is equally (sometimes more) important. In our application, the solutions are ‘rough’, i.e., highly oscillatory if the wavenumber is large. This is a singularity inherent to the differential operator rather than to the domain or the boundary conditions. This effect is called the <i>k-singularity</i>. Similarly, the discrete operator (“stiffness” matrix) becomes singular at eigenvalues of the discretised interior problem (or nearly singular at damped eigenvalues in solid-fluid interaction). This type of singularities is called the <i>lambda-singularities</i>. Both singularities are of global character. Without adaptive correction, their destabilizing effect generally leads to large error of the finite element results, even if the finite element mesh satisfies the ‘rule of the thumb’.
The k- and lambda-singularities are first extensively demonstrated by numerical examples. Then, two <i>a posteriori</i> error estimators are developed and the numerical tests show that, due to these specific phenomena of dynamo-acoustic computations, <i>error control cannot, in general, be accomplished by just ‘transplanting’ methods that worked well in static computations</i>. However, for low wavenumbers, it is necessary to also control the influence of the geometric (reentrants corners) or physical (discontinuities of the boundary conditions) singularities. An <i>h</i>-adaptive version with refinements has been implemented. These tools have been applied to two industrial examples : the GLT, a bi-mode bus from Bombardier Eurorail, and the Vertigo, a sport car from Gillet Automobiles.
As a conclusion, it is recommanded to replace the rule of the thumb by a criterion based on the control of the influence of the specific singularities of the Helmholtz operator. As this aim cannot be achieved by the <i>a posteriori</i> error estimators, it is suggested to minimize the influence of the singularities by modifying the formulation of the finite element method or by formulating a “meshless” method.
Identifer | oai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-07112005-114016 |
Date | 05 December 1997 |
Creators | Bouillard, Philippe |
Contributors | Ihlenburg, Frank, Ladeveze, Pierre, Coyette, Jean-Pierre, De Wilde, Patrick W., Beaufays, Oscar, Warzee, Guy, Preumont, André |
Publisher | Universite Libre de Bruxelles |
Source Sets | Bibliothèque interuniversitaire de la Communauté française de Belgique |
Language | French |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-07112005-114016/ |
Rights | unrestricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus. |
Page generated in 0.0032 seconds