Return to search

Evidence of deep hydraulically active fractures in post-glacial marine clays (Quebec, Canada) : implications for groundwater flow dynamics and slope stability

Il est habituellement supposé que les dépôts d'argile marine postglaciaires du Québec sont généralement intacts sous une croûte fracturée (3 à 5 m de profondeur). Cependant, les données de 210 piézomètres ont démontré des variations grandes et rapides des charges hydrauliques à de grandes profondeurs, et un synchronisme entre les piézomètres dans le même nid. Ces comportements ne sont pas compatibles avec les propriétés hydrauliques des argiles intactes, mais sont plutôt les indicateurs de la présence de fractures profondes hydrauliquement actives. Afin de tester l'hypothèse de la présence de fractures, trois indicateurs ont été analysés dans tous les piézomètres du réseau de surveillance du MTQ : 1) une grande variation de la charge hydraulique, 2) une forte corrélation et 3) de faibles décalages temporels. En outre, l'impact potentiel de ces fractures sur l'écoulement des eaux souterraines et la stabilité des pentes est exploré. Pour ce faire, les données de terrain sont comparées à des modèles transitoires et permanents qui présentent et non des fractures. Deux géométries de pente et différents scénarios de fractures ont été considérés. Par la suite, les résultats de la modélisation hydrogéologique ont été importés dans un modèle de stabilité des pentes pour définir l'impact des changements de charge hydraulique causés par les fractures sur la stabilité des pentes. L'analyse des données mettent en évidence des fractures hydrauliquement actives jusqu'à 17 m de profondeur. Les résultats de la simulation démontrent quant à eux que les scénarios avec des fractures représentent mieux les données de terrain. Les fractures augmentent la charge hydraulique quand l'eau pénètre dans les sols à travers les fractures et se diffuse ensuite dans la matrice du sol. De plus, la charge hydraulique est réduite quand l'eau s'écoule à travers les fractures dans la face de la pente. D'un point de vue hydrogéologique, les fractures peuvent par conséquent améliorer ou réduire la stabilité des pentes dépendant du système d'écoulement. Notons que l'impact mécanique des fractures n'a pas été pris en compte. / To date it is usually assumed that post-glacial marine clay deposits of Quebec are generally intact below a fractured crust (3 to 5 m depth). However, data from 210 piezometers have shown large and rapid variations in hydraulic heads at great depths, and synchronism between the piezometers at different depths in the same nest. This behavior is not compatible with the hydraulic properties of intact clays, but rather are signs of the presence of deep hydraulically active fractures. To test the hypothesis of presence of fractures, three signs of hydraulically active fractures were analysed in all piezometers nest of the MTQ monitoring network: 1) large variation in the hydraulic head, 2) high correlation and 3) small time lags. In addition, the potential impact of these fractures on groundwater flow dynamics and slope stability are explored by comparing field data with transient and steady-state groundwater models with and without fractures. Two slope geometries that exhibit contrasting groundwater flows and different fracture scenarios were considered. Then, results of the hydrogeological modelling were imported into a slope stability model to delineate the impact of the hydraulic head changes due to the fractures on slope stability. Analysis of the MTQ monitoring network data shows evidence of hydraulically active fractures below the crust up to 17 m depth. The simulation results show that the scenarios with fractures better represent the field data. Fractures increase the hydraulic head when water enters the soils through the fractures which then dissipates by hydraulic diffusion into the soil matrix, and is reduced when water flows out through the fractures at the slope face. Therefore, depending on the groundwater flow system, from a hydrogeological perspective, fractures could improve or reduce the slope stability. It should be noted that the mechanical impact of the fractures are not considered.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/102168
Date13 December 2023
CreatorsOspina Llano, Julian Andres
ContributorsLemieux, Jean-Michel, Molson, John W. H.
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (x, 51 pages), application/pdf
CoverageQuébec (Province)
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0023 seconds