Return to search

Role of Sema3A/Neuropilin1 signaling in GnRH system development and study of the involvement of NO-synthesizing neurons in the kisspeptin-dependent preovulatory activation of adult GnRH neurons

Reproduction in mammals is regulated by neurons that synthesize and secrete gonadotropin-releasing hormone (GnRH) and across the species these neurons are present in few numbers scattered in the hypothalamus. Due to limited neurogenesis of these neuronal cell types outside the brain in the olfactory placode, these neurons are subjected to tight regulation during embryonic development to reach their final targets in the hypothalamus, from birth until puberty for minimal secretion of hormone and during adults to achieve pulsatile secretion of the hormone. Deregulation in any of these mechanisms may lead to deleterious effects on adult reproduction and clinical pathologies like absence of puberty, hypogonadism, sterility, amenorrhea, etc. Kallmann syndrome (KS), one of these severe reproductive pathologies is an inherited disorder and patients affected with this syndrome display anosmia (inability to smell) and hypogonadotropic hypogonadism (HH). Genetic screening of molecules in these patients lead to identification of genes like KAL1, FGFR1, FGF8, PROK2, PROKR2, WDR11 and CHD7 encoding proteins that play an important role in migration and targeting of olfactory system during embryonic development however these genes account only for 30% of KS cases emphasizing the need for further characterization and identification of other genes. While these proteins are involved in ontogenesis olfactory and GnRH system, genetic screening of molecules in patients suffering from normosmic idiopathic HH lead to identification of genes encoding for Kisspeptin receptor-GPR54, TAC-TACR3, LEP-LEPR, PCSK-1, GnRH receptor-GnRHR and GnRH-1 itself that play a crucial role in occurrence of puberty or adult reproduction. Here, for my PhD thesis, we focused on studying the role of guidance molecule Semaphorin3A (Sema3A)-Neuropilin1 (Nrp1) interactions in ontogenesis of GnRH neurons during embryonic development while in adults we first addressed the question if hypothalamic Kisspeptin neurons interact with neurons containing neuronal nitric oxide synthase (nNOS), the mutation of which causes HH in mice, and physiological significance of this interactions in regulation of GnRH neurons and neuroendocrine control of female reproduction. Finally our results demonstrate that Sema3A-Nrp1 interactions are implicated in ontogenesis of olfactory and GnRH neurons during embryonic development and nNOS neurons are important mediators of peripheral estrogens-kisspeptin signaling onto GnRH neurons and adult reproduction and propose to further study the implication of nNOS neurons in reproductive pathologies.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00826943
Date12 December 2011
CreatorsHanchate, Naresh Kumar
PublisherUniversité du Droit et de la Santé - Lille II
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0016 seconds