Return to search

Segmentation d'images couleurs et multispectrales de la peau

La délimitation précise du contour des lésions pigmentées sur des images est une première étape importante pour le diagnostic assisté par ordinateur du mélanome. Cette thèse présente une nouvelle approche de la détection automatique du contour des lésions pigmentaires sur des images couleurs ou multispectrales de la peau. Nous présentons d'abord la notion de minimisation d'énergie par coupes de graphes en terme de Maxima A-Posteriori d'un champ de Markov. Après un rapide état de l'art, nous étudions l'influence des paramètres de l'algorithme sur les contours d'images couleurs. Dans ce cadre, nous proposons une fonction d'énergie basée sur des classifieurs performants (Machines à support de vecteurs et Forêts aléatoires) et sur un vecteur de caractéristiques calculé sur un voisinage local. Pour la segmentation de mélanomes, nous estimons une carte de concentration des chromophores de la peau, indices discriminants du mélanomes, à partir d'images couleurs ou multispectrales, et intégrons ces caractéristiques au vecteur. Enfin, nous détaillons le schéma global de la segmentation automatique de mélanomes, comportant une étape de sélection automatique des "graines" utiles à la coupure de graphes ainsi que la sélection des caractéristiques discriminantes. Cet outil est comparé favorablement aux méthodes classiques à base de coupure de graphes en terme de précision et de robustesse.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00934789
Date27 June 2013
CreatorsGong, Hao
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0014 seconds