On considère le problème d'advection-diffusion stationnaire v(∇u, ∇v)+( β*∇u, v) = (f, v) et non stationnaire d/dt (u(t), v) + v(∇u, ∇v)+( β*∇u, v) = (g(t), v), ainsi que le problème d'advection (β*∇u, v) = (f, v) sur un domaine polygonal borné du plan. Le terme de diffusion est approché par des éléments de Crouzeix Raviart et le terme de convection par une méthode upwind sur des volumes barycentriques finis avec un maillage triangulaire. Pour le problème stationnaire d'advection-diffusion, la L²-stabilité (c'est-à-dire indépendante du coefficient de diffusion v) est démontrée pour la solution du problème approché obtenue par cette méthode d'éléments finis et de volumes finis. Pour cela une condition sur la géométrie doit être satisfaite. Des exemples de maillages sont donnés. Toujours avec cette condition géométrique sur le maillage, une inégalité de stabilité (où la discrétisation en temps n'est pas couplée à une condition sur la finesse du maillage) est obtenue pour le cas non-stationnaire. La discrétisation en temps y est faite par un schéma d'Euler implicite. Une majoration de l'erreur, proportionnelle au pas en temps et à la finesse du maillage, est ensuite proposée et exprimée explicitement en fonction des données du problème. Pour le problème d'advection, une approche utilisant la théorie des graphes est utilisée pour obtenir l'existence et l'unicité de la solution, ainsi que le résultat de stabilité. Comme pour la stabilité du problème d'advection-diffusion, une condition géométrique - qui est équivalente pour les points intérieurs du maillage à celle du problème d'advection-diffusion - est nécessaire.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00839524 |
Date | 30 May 2013 |
Creators | Mildner, Marcus |
Publisher | Université du Littoral Côte d'Opale |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.1999 seconds