Return to search

Algorithmes numériques pour l'analyse topologique : Analyse par intervalles et théorie des graphes.

Le travail présenté dans cette thèse concerne d'une part, l'étude qualitative d'ensembles et d'autre part, celui de l'étude de la stabilité d'un système dynamique. Les méthodes numériques proposées combinent le calcul par intervalles et la théorie des graphes.<br /><br />De nombreux problèmes, comme l'étude de l'espace des configurations d'un robot, se ramènent à une étude qualitative d'ensembles. Ici, la ``taille'' de l'ensemble importe peu, ce qui compte, c'est sa ``topologie''. Les méthodes proposées calculent des invariants topologiques d'ensembles. Les ensembles considérés sont décrits à l'aide d'inégalités $\mathcal{C}^{\infty}$. L'idée maîtresse est de décomposer un ensemble donné en parties contractiles et d'utiliser l'homologie de \v Cech.<br /><br />La seconde partie de la thèse concerne l'étude de point<br />asymptotiquement stables des systèmes dynamiques (linéaires ou non). Plus largement, on propose une méthode pour approcher le bassin d'attraction d'un point asymptotiquement stable. Dans un premier temps, on utilise la théorie de Lyapunov et le calcul par intervalle<br />pour trouver effectivement un voisinage inclus dans le bassin d'attraction d'un point prouvé asymptotiquement stable. Puis, on combine, une fois de plus, la théorie des graphes et les méthodes d'intégration d'équations différentielles ordinaires pour améliorer ce voisinage et ainsi construire un ensemble inclus dans le bassin<br />d'attraction de ce point.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00340999
Date14 December 2006
CreatorsDelanoue, Nicolas
PublisherUniversité d'Angers
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds