Return to search

Développement d'un outil de simulation par Monte Carlo du rayonnement diffusé en tomodensitométrie

L’objectif de ce projet est de créer un programme logiciel permettant de corriger le rayonnement diffusé dans une acquisition tomodensitométrique à géométrie conique. Pour ce faire, une simulation Monte Carlo est utilisée pour estimer le rayonnement diffusé, ce qui consiste à reproduire numériquement un examen en tomodensitométrie. Ce projet a été divisé en deux sections : la validation de la physique pour ce programme spécifique et le développement logiciel du programme. La validation consistait à reproduire les résultats obtenus avec Geant4 avec GPUMCD. Geant4, la plateforme de référence, et GPUMCD, la plateforme à l’étude, sont deux librairies logicielles pour la simulation numérique du transport de particules à travers la matière utilisant les calculs Monte Carlo. Les éléments étudiés sont les sections efficaces, les matériaux, l’algorithme de diffusion Rayleigh et l’algorithme de diffusion Compton. Bien que quelques erreurs persistent dans la physique de GPUMCD, une nette amélioration des résultats entre GPUMCD et Geant4 a été obtenue. La différence entre les deux simulations qui était supérieure à 100% pour une géométrie complexe est passée sous la barre du 10%. De plus, il a été possible d’identifier quelques autres causes telles qu’une différence dans la définition des modèles physiques, et ce, plus précisément dans l’algorithme de diffusion Compton. En ce qui concerne la seconde partie du projet, bien que la correction n’a pu être effectuée pour une reconstruction, tous les éléments ont été implémentés pour estimer le rayonnement diffusé pour une géométrie de patient provenant de données cliniques d’une reconstruction tomodensitométrique. Les paramètres et les stratégies étudiés dans le but d’optimiser le temps de calculs tout en conservant la justesse des résultats sont : le traçage de rayons, le lissage gaussien du rayonnement diffusé, la réduction du nombre de pixels sur le détecteur, l’interpolation des projections, la symétrie et la réduction de nombre de voxels dans le patient. De plus, en considérant une correction de haute qualité, soit 2% d’erreur et moins par stratégie implémentée, on obtient un temps de simulation de moins de 2 minutes sur une GPU Nvidia Titan X. Pour une simulation dite de basse qualité, soit 5% d’erreur et moins par stratégie implémentée, on obtient un temps d’exécution de moins de 15 s par simulation. Cela correspond à des temps cliniquement acceptables si le patient doit attendre sur la table. / The goal of this project is to develop an application to correct the scattered radiation in a cone beam computed tomography scan (CBCT). A Monte Carlo simulation is used to estimate the scattered radiation which is a numerical replication of a CBCT acquisition. This project has been divided into two sections : the validation of the physics for this specific application and the development of the application. The validation consisted in reproducing the results obtained with Geant4 in GPUMCD. Geant4 is the reference platform and GPUMCD is the platform studied. Both are Monte Carlo simulators of the passage of particles through matter.The elements studied are the cross sections, the materials, the Rayleigh scattering algorithm and the Compton scattering algorithm. Although some errors are still present, a great improvement of the results between GPUMCD and Geant4 was obtained. The difference between the two simulations was greater than 100 % for complex geometries and dropped below 10% after corrections of the physics. In addition, it was possible to identify some other problems such as a theoretical difference in the Compton scattering algorithms. Regarding the second part of the project, although the correction could not be implemented in a reconstruction, all elements are present to estimate the scattered radiation for an actual CBCT reconstruction. The parameters and strategies studied in order to optimize the computation time while maintaining the accuracy of the results are : ray tracing, Gaussian smoothing of scattered radiation, reduction of the number of pixels on the detector, interpolation of between the simulated projections, symmetry and reduction of number of voxels in the patient. In addition, considering a correction of high quality is 2 % error and less per implemented strategy, a simulation time of less than 2 minutes is obtained. For a low quality simulation (5% error and less per parameter), a simulation time of less than 15 seconds per simulation was obtained. Those are clinically acceptable simulation times.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/31391
Date25 September 2018
CreatorsSaucier, Marie Annie
ContributorsDesprés, Philippe
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xii, 96 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.006 seconds