Return to search

Inheritance and evolution of epigenetic reprogramming in Mammalian germ cells

During mammalian post-implantation development, germ cells are induced from the somatic tissues of the embryo. Following their induction, primordial germ cells undergo a genome-wide erasure and de novo re-establishment of DNA methylation marks. This epigenetic reprogramming re-instates pluripotency and allows parental imprints to be deposited. In the male germ line, a unique RNAi pathway involving PIWI proteins and their associated small RNAs (piRNAs) is necessary for proper de novo methylation. PIWI mutant mice are infertile and display methylation defects over transposon sequences. Using a transgenic approach, we investigated the signals necessary for piRNA production. We show that artificial piRNAs can be produced from reprogrammed loci outside of their native context. We then studied the genome-wide impact of piRNA loss on germ cell methylation. Whereas most of the genome is properly methylated, only a small group of transposons transiently reactivated in primordial germ cells is affected. Also we identified important structural differences in de novo methylation profiles between human sperm and ES cells. Finally, we compared sperm methylation profiles between human and chimpanzee and showed that the genome and the epigenome can evolve independently. Taken together, our results highlight the surprising plasticity of genome and epigenome interactions during development and evolution

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00833274
Date09 May 2012
CreatorsMolaro, Antoine
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0021 seconds