A otimização topológica de estruturas está relacionada à concepção de projetos que executem suas funções com nível de segurança adequado empregando a quantidade mínima de material. Neste trabalho, determina-se a geometria ótima de estruturas planas por meio do acoplamento do Método dos Elementos de Contorno (MEC) ao Método Level Set (MLS). O algoritmo é composto por 3 etapas: problema mecânico, otimização topológica e reconstrução da estrutura. O problema mecânico é resolvido pelas equações algébricas do MEC. A otimização topológica é determinada pelo MLS, este representa a geometria do corpo e suas evoluções por meio da função Level Set (LS) avaliada em seu nível zero. Na reconstrução realiza-se o remalhamento, pois a cada iteração a estrutura é modificada. O acoplamento proposto resulta na geometria ótima da estrutura sem a necessidade da aplicação de filtros. Os exemplos analisados mostram que algoritmo desenvolvido capta adequadamente a geometria ótima das estruturas. Com esse trabalho, avança-se no campo das aplicações do acoplamento MEC-MLS e no desenvolvimento de soluções inovadoras para problemas complexos de engenharia. / In general, the topological optimization of structures is related to design projects that perform their functions with appropriate security levels using the minimum amount of material. This research determines the optimal geometry of 2D structures by coupling the Boundary Blement Method (BEM) to Level Set Method (LSM). The algorithm consists of 3 steps: mechanical model, topology optimization and structure reconstruction. The mechanical model is solved by BEM algebraic equations. The topology optimization is determined using the MLS, the geometry of the body is determined by the Level Set (LS) function evaluated at the zero level. The reconstruction achieves the remeshing, because for each iteration of the structure is modified. The proposed coupling results in the optimal geometry of the structure without the filters application. The examples show that the algorithm developed captures adequately the optimal geometry of the structures. With this dissertation, it is possible advance in the field of applications of the BEM - LSM and develop innovative solutions to complex engineering problems.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24092014-150115 |
Date | 01 August 2014 |
Creators | Vitorio Junior, Paulo Cezar |
Contributors | Leonel, Edson Denner |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds