Estendemos para a teria de campos o método variacional de Kleinert. Este método foi primeiramente usado na mecânica quântica e fornece uma expansão em cumulantes convergente. Sua extensão para a teoria de campos não é trivial devido às divergências ultravioletas que aparecem quando a dimensão do espaço é maior que 2. Devido a estas divergências, a teoria deve ser regularizada e normalizada. Além das dificuldades usuais associadas com a renormalização, devemos decidir se calculamos o valor ótimo do parâmetro variacional antes ou depois da renormalização. Nesta tese abordamos o problema da renormalização do potencial efetivo variacional. Primeiramente, mostramos que o potencial efetivo variacional em temperatura zero coincide com o \"potencial efetivo pós-gaussiano\" introduzido por Stancu e Stevenson. Em seguida, apresentamos um esquema de renormalização que permite que renormalizemos a teoria antes de calcular o parâmetro variacional ótimo. Usando este esquema mostramos que o potencial efetivo usual, calculado em ordem 1-loop, pode ser obtido a partir do esquema variacional de Kleinert inteirando uma única vez a equação que determina o parâmetro variacional. Para o potencial efetivo em ordem 2-loops esta aproximação não é tão boa. A renormalização da teoria antes do cálculo do parâmetro variacional permite que estudemos o potencial efetivo variacional numericamente e de forma não-perturbativa, como foi feito por Kleinert para a mecânica quântica. / We have extended the Kleinert variational technique to field theory. This method was first used in quantum mechanics and provides a convergent cumulate expansion that is extremely accurate. Its extension to field theory is non-trivial because of the ultraviolet divergences that appear when the space dimension is greater than 2. Due to these divergences the theory has to be regularized and renormalized. In addition to the usual difficulties associated with renormalization, one has to decide whether one calculates the optimum value of the variational parameter before or after renormalization. In this thesis we deal with the renormalization of the variational effective potential. Firstly, we show that the zero temperature regularized variational potential coincides with the post-Gaussian effective potential introduced by Stancu and Stenvenson. Secondly, we present a renormalization scheme that enables one to renormalize the theory before calculating the optimum variational parameter. Using this scheme we show that the usual 1-loop effective potential can be obtained from the Kleinert variational scheme by interacting only once the equation that determines the variational parameter. In this sense, the 1-loop expansion is contained within the variational scheme. For the 2-loop effective potential the same approximation is not so good. The renormalization of the theory before the calculation of the variational parameter allows one to study the variational effective potential numerically and in a non-pertubative way, as it was done in quantum mechanics by Kleinert.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18022014-140626 |
Date | 06 June 2002 |
Creators | Cristiane Moura Lima de Aragão |
Contributors | Carlos Eugenio Imbassahy Carneiro, Antônio José Accioly, Bruto Max Pimentel Escobar, Josif Frenkel, Maria Teresa Climaco dos Santos Thomaz |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds