<p> It is believed that Sr2RuO4 is a triplet superconductor that breaks time reversal symmetry, and it is expected to have spontaneous magnetization both at the sample edge, as well as at domain walls. Recent magnetic microscopy results place upper limits on the magnetic fields differing from previous theoretical calculations by 2 orders of magnitude. Using a Ginzburg-Landau formalism we investigate the effects of a rough surface as well as parameter choices which differ from the typical weak coupling parameters on the magnitudes of the spontaneous supercurrents and magnetic fields. The dependance on surface roughness is found to be small resulting in only a 20% reduction for the weak coupling parameters. Changing the parameters from weak coupling in addition to pair breaking surface effects is also found to affect the magnitudes of the spontaneous fields weakly, except in certain unphysical parameter regimes. The effects of the surface stabilizing another non-magnetic
order parameter are considered, and give rise to field distributions with similar features to those present at domain walls.</p> / Thesis / Master of Science (MSc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21377 |
Date | January 2008 |
Creators | Ashby, Phillip E. C. |
Contributors | Kallin, C., Physics |
Source Sets | McMaster University |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds