Herein, we report on the mechanochemical Scholl reaction of dendritic oligophenylene precursors to produce benchmark nanographenes such as hexa-peri-hexabenzocoronene (HBC), triangular shaped C60 and expanded C222 under solvent-free conditions. The solvent-free approach overcomes the bottleneck of solubility limitation in this well-known and powerful reaction. The mechanochemical approach allows tracking the reaction process by in situ pressure measurements. The quality of produced nanographenes has been confirmed by MALDI-TOF mass spectrometry and UV-Vis absorption spectroscopy. This approach paves the way towards gram scale and environmentally benign synthesis of extended nanographenes and possibly graphene nanoribbons suitable for application in carbon based electronics or energy applications.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:70655 |
Date | 28 April 2020 |
Creators | Grätz, Sven, Beyer, Doreen, Tkachova, Valeriya, Hellmann, Sarah, Berger, Reinhard, Feng, Xinliang, Borchardt, Lars |
Publisher | Royal Society of Chemistry |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1364-548X, 10.1039/c8cc01993b, info:eu-repo/grantAgreement/Europäischer Sozialfonds/Horizon2020/100270084//Graphenzentrum Dresden/GraphD |
Page generated in 0.0024 seconds