Vehicular Ad-hoc Networks (VANETs) provide networks for smart vehicles and will enable future systems to provide services that enhance the overall transportation experience. However, these applications require consideration to possible damage to both property and human life. Communication between vehicles requires data immutability and user privacies to provide safe operation of the system. Blockchains can provide these properties and more to create a more secure and decentralized system. However, a chain’s security comes from the chain length. VANETs’ ephemeral connections provide harm limits how much data can be exchanged during vehicle rendezvous. This thesis investigates lightweight blockchains that operate with lower overheads. A survey of current techniques to accomplish this are discussed in Chapter 1. Two techniques are demonstrated within two separate environments to demonstrate the network overhead reductions when using a lightweight blockchain with respect to network and storage loads within these VANET environments.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5768 |
Date | 01 August 2023 |
Creators | Bowlin, Edgar |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0015 seconds