Return to search

Role of Map4k4 in Skeletal Muscle Differentiation: A Dissertation

Skeletal muscle is a complicated and heterogeneous striated muscle tissue that serves critical mechanical and metabolic functions in the organism. The process of generating skeletal muscle, myogenesis, is elaborately coordinated by members of the protein kinase family, which transmit diverse signals initiated by extracellular stimuli to myogenic transcriptional hierarchy in muscle cells. Mitogen-activated protein kinases (MAPKs) including p38 MAPK, c-Jun N terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) are components of serine/threonine protein kinase cascades that play important roles in skeletal muscle differentiation. The exploration of MAPK upstream kinases identified mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4), a serine/threonine protein kinase that modulates p38 MAPK, JNK and ERK activities in multiple cell lines. Our lab further discovered that Map4k4 regulates peroxisome proliferator-activated receptor γ (PPARγ) translation in cultured adipocytes through inactivating mammalian target of rapamycin (mTOR), which controls skeletal muscle differentiation and hypotrophy in kinase-dependent and -independent manners. These findings suggest potential involvement of Map4k4 in skeletal myogenesis.
Therefore, for the first part of my thesis, I characterize the role of Map4k4 in skeletal muscle differentiation in cultured muscle cells. Here I show that Map4k4 functions as a myogenic suppressor mainly at the early stage of skeletal myogenesis with a moderate effect on myoblast fusion during late-stage muscle differentiation. In agreement, Map4k4 expression and protein kinase activity are declined with myogenic differentiation. The inhibitory effect of Map4k4 on skeletal myogenesis requires its kinase activity. Surprisingly, none of the identified Map4k4 downstream effectors including p38 MAPK, JNK and ERK is involved in the Map4k4-mediated myogenic differentiation. Instead, expression of myogenic regulatory factor Myf5, a positive mediator of skeletal muscle differentiation is transiently regulated by Map4k4 to partially control skeletal myogenesis. Mechanisms by which Map4k4 modulates Myf5 amount have yet to be determined.
In the second part of my thesis, I assess the relationship between Map4k4 and IGF-mediated signaling pathways. Although siRNA-mediated silencing of Map4k4 results in markedly enhanced myotube formation that is identical to the IGF-induced muscle hypertrophic phenotype, and Map4k4 regulates IGF/Akt signaling downstream effector mTOR in cultured adipocytes, Map4k4 appears not to be involved in the IGF-mediated ERK1/2 signaling axis and the IGF-mediated Akt signaling axis in C2C12 myoblasts. Furthermore, Map4k4 does not affect endogenous Akt signaling or mTOR activity during C2C12 myogenic differentiation.
The results presented here not only identify Map4k4 as a novel suppressor of skeletal muscle differentiation, but also add to our knowledge of Map4k4 action on multiple signaling pathways in muscle cells during skeletal myogenesis. The effects that Map4k4 exerts on myoblast differentiation, fusion and Myf5 expression implicate Map4k4 as a potential drug target for muscle mass growth, skeletal muscle regeneration and muscular dystrophy.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1679
Date01 May 2013
CreatorsWang, Mengxi
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved.

Page generated in 0.0026 seconds