Return to search

C. elegans MAP Kinase Mutants Show Enhanced Susceptibility to Infection by the Yeast S. cerevisiae

C. elegans is as an extremely powerful model for the study of innate immunity. MAP kinase signaling pathways in C. elegans are involved in the response of C. elegans to infection by pathogenic bacteria. The yeast S. cerevisiae can infect C. elegans, producing pathogenic effects. In this project, we tested whether several MAP kinase pathways are important for C. elegans¡¯ resistance to yeast infection. We tested members of several MAP kinase pathways including tir-1, nsy-1, sek-1 and pmk-1 in the p38 pathway, mek-1, jnk-1 and kgb-1 in JNK pathway and mek-2 and mpk-1 in the ERK pathway. We used survival assays to compare the responses of mutants of components of these pathways to the control responses of wild-type C. elegans. In the survival assay, we found that mutants in all three MAP kinase pathways showed a decreased survival relative to wild type; therefore all three pathways are important for innate immunity against the yeast pathogen. With respect to the p38 pathway, mutations affected survival but not the deformed anal region (Dar) phenotype, a putative defensive response induced by yeast in wild-type C. elegans. This indicates that for the p38 pathway, survival depends on some other immune response besides Dar. Finally, we hypothesize that cross talk occurs between p38 and JNK MAPK pathways in the C. elegans immune responses.

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1820
Date14 May 2010
CreatorsYun, Meijiang
ContributorsSamuel M. Politz, Advisor, David S. Adams, Committee Member, Elizabeth F. Ryder, Committee Member
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0016 seconds